This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350548 #10 Feb 20 2022 23:08:08 %S A350548 0,1,0,2,1,0,3,5,8,4,1,0,4,1,0,5,8,4,1,0,6,3,5,8,4,1,0,7,2,1,0,8,4,1, %T A350548 0,9,14,7,2,1,0,10,3,5,8,4,1,0,11,17,26,13,4,1,0,12,6,3,5,8,4,1,0,13, %U A350548 4,1,0,14,7,2,1,0,15,23,35,53,80,40,13,4,1,0 %N A350548 Irregular triangle T(n,k) read by rows in which row n lists the iterates of the A350515 map from n to 0. %H A350548 Emre Yolcu, Scott Aaronson and Marijn J. H. Heule, <a href="https://arxiv.org/abs/2105.14697">An Automated Approach to the Collatz Conjecture</a>, arXiv:2105.14697 [cs.LO], 2021, pp. 21-25. %H A350548 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %F A350548 T(n,0) = n; T(n,k) = A350515(T(n,k-1)), where n >= 0 and k >= 1. %F A350548 T(n,k) = (A350279(n+1,k+1)-1)/2, where n >= 0 and k >= 0. %e A350548 Written as an irregular triangle, the sequence begins: %e A350548 n\k 0 1 2 3 4 5 6 %e A350548 ------------------------------- %e A350548 0: 0 %e A350548 1: 1 0 %e A350548 2: 2 1 0 %e A350548 3: 3 5 8 4 1 0 %e A350548 4: 4 1 0 %e A350548 5: 5 8 4 1 0 %e A350548 6: 6 3 5 8 4 1 0 %e A350548 7: 7 2 1 0 %e A350548 8: 8 4 1 0 %e A350548 9: 9 14 7 2 1 0 %e A350548 10: 10 3 5 8 4 1 0 %e A350548 11: 11 17 26 13 4 1 0 %e A350548 ... %t A350548 A350515[n_]:=If[Mod[n,3]==1,(n-1)/3,If[Mod[n,6]==0||Mod[n,6]==2,n/2,(3n+1)/2]]; %t A350548 nrows=20;Table[NestWhileList[A350515,n,#>0&],{n,0, nrows-1}] %Y A350548 Cf. A070165, A349407, A350279, A350515. %K A350548 nonn,easy,tabf %O A350548 0,4 %A A350548 _Paolo Xausa_, Jan 04 2022