This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350557 #8 Jan 18 2022 21:46:34 %S A350557 1,1,1,3,4,1,15,21,7,1,105,148,52,10,1,945,1333,472,96,13,1,10395, %T A350557 14664,5197,1066,153,16,1,135135,190633,67567,13873,2009,223,19,1, %U A350557 2027025,2859496,1013512,208116,30170,3380,306,22,1 %N A350557 Triangle T(n,k) read by rows with T(n,0) = (2*n)! / (2^n * n!) for n >= 0 and T(n,k) = (Sum_{i=k..n} binomial(i-1,k-1) * 2^i * i! / (2*i)!) * (2*n)! / (2^n * n!) for 0 < k <= n. %F A350557 T(n,n) = 1. %F A350557 T(n,k) = binomial(n-1,k-1) + (2*n - 1) * T(n-1,k) for 0 < k < n. %F A350557 Conjecture: M(n,k) = (-1)^(n-k) * T(n,k) is matrix inverse of A350512. %e A350557 Triangle T(n,k) for 0 <= k <= n starts: %e A350557 n\k : 0 1 2 3 4 5 6 7 8 %e A350557 ================================================================= %e A350557 0 : 1 %e A350557 1 : 1 1 %e A350557 2 : 3 4 1 %e A350557 3 : 15 21 7 1 %e A350557 4 : 105 148 52 10 1 %e A350557 5 : 945 1333 472 96 13 1 %e A350557 6 : 10395 14664 5197 1066 153 16 1 %e A350557 7 : 135135 190633 67567 13873 2009 223 19 1 %e A350557 8 : 2027025 2859496 1013512 208116 30170 3380 306 22 1 %e A350557 etc. %t A350557 Flatten[Table[If[k==0,(2n)!/(2^n n!),Sum[Binomial[i-1,k-1]2^i i!/(2i)!,{i,k,n}](2n)!/(2^n n!)],{n,0,8},{k,0,n}]] (* _Stefano Spezia_, Jan 06 2022 *) %Y A350557 Cf. A001147 (column 0), A286286 (column 1), A249349 (column 2). %Y A350557 Cf. A000007 (alternating row sums). %Y A350557 Cf. A350512. %K A350557 nonn,easy,tabl %O A350557 0,4 %A A350557 _Werner Schulte_, Jan 05 2022