This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350561 #30 Feb 22 2022 00:39:56 %S A350561 1,4,12,60,400,2960,24600,221072,2076744,20123080,197757768, %T A350561 1937125160,18687793880,175793675328,1594744777464,13794351556920, %U A350561 112576101214496,857945953884624,6037935953538456,38729529837059648,222984258240522544,1133096911619304064,4985812137371331624 %N A350561 a(n) is the number of ways of making n moves in English Peg Solitaire. %C A350561 This sequence has 32 terms in total. %e A350561 Given the positions marked thus: %e A350561 a b c %e A350561 d e f %e A350561 g h i j k l m %e A350561 n o p q r s t %e A350561 u v w x y z 0 %e A350561 1 2 3 %e A350561 4 5 6 %e A350561 there are 12 ways to make two moves, viz., %e A350561 (1) e jumps over j, then h jumps over i; %e A350561 (2) e jumps over j, then x jumps over q; %e A350561 (3) e jumps over j, then l jumps over k; %e A350561 (4) o jumps over p, then d jumps over i; %e A350561 (5) o jumps over p, then 1 jumps over w; %e A350561 (6) o jumps over p, then r jumps over q; %e A350561 (7) 2 jumps over x, then j jumps over q; %e A350561 (8) 2 jumps over x, then v jumps over w; %e A350561 (9) 2 jumps over x, then z jumps over y; %e A350561 (10) s jumps over r, then f jumps over k; %e A350561 (11) s jumps over r, then p jumps over q; %e A350561 (12) s jumps over r, then 3 jumps over y. %Y A350561 Cf. A335656, A350998. %K A350561 nonn,fini %O A350561 0,2 %A A350561 _Douglas Boffey_, Jan 28 2022