This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350566 #25 Aug 30 2025 10:12:44 %S A350566 1,1,14,947,161388,56558003,36757837732 %N A350566 a(n) is the maximum permanent of an n X n matrix using the integers 1 to n^2. %C A350566 a(7) >= 38677620556961 corresponding to the matrix %C A350566 14, 25, 39, 3, 45, 2, 42 %C A350566 32, 21, 10, 46, 5, 47, 8 %C A350566 31, 20, 9, 48, 1, 49, 6 %C A350566 44, 24, 18, 33, 13, 34, 15 %C A350566 22, 29, 35, 12, 36, 11, 37 %C A350566 16, 26, 38, 7, 43, 4, 40 %C A350566 23, 41, 30, 19, 27, 17, 28 . - _Robert Israel_, Mar 19 2025 %C A350566 a(7) >= 38677691168324 corresponding to the matrix %C A350566 1, 4, 14, 25, 39, 42, 45 %C A350566 5, 6, 16, 26, 38, 40, 43 %C A350566 11, 12, 22, 29, 35, 36, 37 %C A350566 17, 19, 23, 41, 30, 28, 27 %C A350566 33, 34, 44, 24, 18, 15, 13 %C A350566 48, 46, 32, 21, 10, 8, 3 %C A350566 49, 47, 31, 20, 9, 7, 2. - _Pontus von Brömssen_, Mar 20 2025 %H A350566 Carl-Erik Fröberg, <a href="https://doi.org/10.1007/BF01941124">On a combinatorial problem related to permanents</a>, BIT 28 (1988), No. 3, 406-411. %e A350566 a(2) = 14: %e A350566 [2, 3; %e A350566 4, 1] %e A350566 . %e A350566 a(3) = 947: %e A350566 [3, 7, 6; %e A350566 9, 4, 1; %e A350566 2, 5, 8] %e A350566 . %e A350566 a(4) = 161388: %e A350566 [ 2, 3, 16, 6; %e A350566 11, 13, 4, 10; %e A350566 8, 9, 5, 15; %e A350566 14, 12, 1, 7] %e A350566 . %e A350566 a(5) = 56558003: %e A350566 [10, 2, 19, 25, 3; %e A350566 11, 5, 23, 20, 8; %e A350566 21, 14, 12, 9, 15; %e A350566 13, 24, 6, 1, 18; %e A350566 16, 17, 7, 4, 22] %e A350566 . %e A350566 a(6) = 36757837732: %e A350566 [32, 30, 3, 19, 23, 2; %e A350566 1, 5, 34, 14, 11, 36; %e A350566 17, 18, 15, 31, 22, 16; %e A350566 29, 28, 7, 20, 24, 6; %e A350566 26, 25, 10, 21, 27, 9; %e A350566 4, 8, 35, 13, 12, 33] %o A350566 (Python) %o A350566 from itertools import permutations %o A350566 from sympy import Matrix %o A350566 def A350566(n): return 1 if n == 0 else max(Matrix(n,n,p).per() for p in permutations(range(1,n**2+1))) # _Chai Wah Wu_, Jan 21 2022 %Y A350566 Cf. A085000 (determinant), A350565 (minimum), A350858, A350859, A358487 (elements 0 to n^2-1). %K A350566 nonn,hard,more,changed %O A350566 0,3 %A A350566 _Hugo Pfoertner_ at the suggestion of _Stefano Spezia_, Jan 21 2022