cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350571 Triangular array read by rows. T(n,k) is the number of unlabeled partial functions on [n] with exactly k undefined points, n>=0, 0<=k<=n.

This page as a plain text file.
%I A350571 #12 Jan 07 2022 11:15:11
%S A350571 1,1,1,3,2,1,7,6,2,1,19,16,7,2,1,47,45,19,7,2,1,130,121,57,20,7,2,1,
%T A350571 343,338,158,60,20,7,2,1,951,929,457,170,61,20,7,2,1,2615,2598,1286,
%U A350571 498,173,61,20,7,2,1,7318,7261,3678,1421,510,174,61,20,7,2,1
%N A350571 Triangular array read by rows.  T(n,k) is the number of unlabeled partial functions on [n] with exactly k undefined points, n>=0, 0<=k<=n.
%C A350571 It appears that the columns converge to A116950.
%D A350571 O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009.
%F A350571 G.f.: Product_{i>=1} 1/(1-y*x^i)^A000081(i)*Product_{i>=1} 1/(1-x^i)^A002861(i).
%e A350571 Triangle T(n,k) begins:
%e A350571     1;
%e A350571     1,   1;
%e A350571     3,   2,   1;
%e A350571     7,   6,   2,   1;
%e A350571    19,  16,   7,   2,  1;
%e A350571    47,  45,  19,   7,  2,  1;
%e A350571   130, 121,  57,  20,  7,  2, 1;
%e A350571   343, 338, 158,  60, 20,  7, 2, 1;
%e A350571   951, 929, 457, 170, 61, 20, 7, 2, 1;
%e A350571   ...
%t A350571 nn = 10; A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt",
%t A350571     "Table"], {_, _}][[;; nn, 2]];
%t A350571 A000081 = Drop[Cases[ Import["https://oeis.org/A000081/b000081.txt",
%t A350571      "Table"], {_, _}][[;; nn + 1, 2]], 1];
%t A350571 Map[Select[#, # > 0 &] &, CoefficientList[Series[ Product[1/(1 -  y x^i)^A000081[[i]], {i, 1, nn}] Product[1/(1 - x^i)^A002861[[i]], {i, 1, nn}], {x, 0, nn}], {x,y}]] // Grid
%Y A350571 Cf. A126285 (row sums), A001372 (column k=0), A000081, A002861.
%Y A350571 Cf. A116950.
%K A350571 nonn,tabl
%O A350571 0,4
%A A350571 _Geoffrey Critzer_, Jan 06 2022