This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350575 #18 Jan 11 2022 15:01:35 %S A350575 1,3,5,7,10,11,14,15,19,21,23,30,33,34,37,41,42,43,46,51,55,58,59,61, %T A350575 67,69,70,73,77,78,82,85,86,87,89,91,94,95,101,102,105,106,109,111, %U A350575 115,118,119,130,131,134,138,139,141,142,146,149,151,155,158,159,161,166,170,174,178,181,182,185,190,191,194,195,199 %N A350575 Squarefree numbers k such that k + (k reversed) is also squarefree. %C A350575 This is to squarefree numbers what A061783 is to primes. %H A350575 Robert Israel, <a href="/A350575/b350575.txt">Table of n, a(n) for n = 1..10000</a> %e A350575 14 is a term since it's squarefree and so is 14 + 41 = 55. %p A350575 R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n): %p A350575 q:= n-> andmap(numtheory[issqrfree], [n, n+R(n)]): %p A350575 select(q, [$1..200])[]; # _Alois P. Heinz_, Jan 07 2022 %t A350575 okQ[n_] := SquareFreeQ[n] && SquareFreeQ[n + IntegerReverse[n]]; %t A350575 Select[Range[200], okQ] %o A350575 (PARI) isok(m) = issquarefree(m) && issquarefree(m+fromdigits(Vecrev(digits(m)))); \\ _Michel Marcus_, Jan 07 2022 %o A350575 (Python) %o A350575 from sympy.ntheory.factor_ import core %o A350575 def squarefree(n): return core(n, 2) == n %o A350575 def ok(n): return squarefree(n) and squarefree(n + int(str(n)[::-1])) %o A350575 print([k for k in range(1, 200) if ok(k)]) # _Michael S. Branicky_, Jan 07 2022 %Y A350575 Cf. A004086, A005117, A056964, A061783. %K A350575 nonn,base,easy %O A350575 1,2 %A A350575 _Jean-François Alcover_, Jan 07 2022