This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350584 #11 Mar 27 2022 10:54:14 %S A350584 1,1,3,1,4,7,1,5,12,19,1,6,18,37,56,1,7,25,62,118,174,1,8,33,95,213, %T A350584 387,561,1,9,42,137,350,737,1298,1859,1,10,52,189,539,1276,2574,4433, %U A350584 6292,1,11,63,252,791,2067,4641,9074,15366,21658 %N A350584 Triangle read by rows, T(n, k) = [x^k] ((2*x^3 - 3*x^2 - x + 1)/(1 - x)^(n + 2)), for n >= 1 and 0 <= k < n. %e A350584 Triangle starts: %e A350584 [1] [1] %e A350584 [2] [1, 3] %e A350584 [3] [1, 4, 7] %e A350584 [4] [1, 5, 12, 19] %e A350584 [5] [1, 6, 18, 37, 56] %e A350584 [6] [1, 7, 25, 62, 118, 174] %e A350584 [7] [1, 8, 33, 95, 213, 387, 561] %e A350584 [8] [1, 9, 42, 137, 350, 737, 1298, 1859] %e A350584 [9] [1, 10, 52, 189, 539, 1276, 2574, 4433, 6292] %p A350584 # Compare the analogue algorithm for the Bell triangle in A046937. %p A350584 A350584Triangle := proc(len) local A, P, T, n; A := [2]; P := [1]; T := [[1]]; %p A350584 for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), A[-1]]); %p A350584 A := P; T := [op(T), P] od; T end: %p A350584 A350584Triangle(10): ListTools:-Flatten(%); %p A350584 # Alternative: %p A350584 ogf := n -> (2*x^3 - 3*x^2 - x + 1)/(1 - x)^(n + 2): %p A350584 ser := n -> series(ogf(n), x, n): %p A350584 row := n -> seq(coeff(ser(n), x, k), k = 0..n-1): %p A350584 seq(row(n), n = 1..10); %Y A350584 A280891 (row sums), A135339 (alternating row sums), A005807 or A071716 (main diagonal). %K A350584 nonn,tabl %O A350584 1,3 %A A350584 _Peter Luschny_, Mar 27 2022