cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350587 Expansion of Product_{k>=1} (1-x^k/Product_{j=1..k} (1-x^j)).

This page as a plain text file.
%I A350587 #41 Jan 24 2022 04:40:29
%S A350587 1,-1,-2,-2,-2,1,4,13,22,36,47,54,37,-11,-129,-346,-709,-1257,-2023,
%T A350587 -2979,-4014,-4836,-4851,-3041,2310,13785,35186,71598,129624,216732,
%U A350587 340488,505769,710775,938823,1146714,1244936,1070745,347604,-1366923,-4751316
%N A350587 Expansion of Product_{k>=1} (1-x^k/Product_{j=1..k} (1-x^j)).
%t A350587 a[n_] := SeriesCoefficient[Product[1 - x^k/Product[1 - x^j, {j, 1, k}], {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 0, 39}] (* _Robert P. P. McKone_, Jan 18 2022 *)
%o A350587 (PARI) my(N=40, x='x+O('x^N)); Vec(prod(k=1, N, 1-x^k/prod(j=1, k, 1-x^j)))
%Y A350587 Convolution inverse of A141199.
%K A350587 sign
%O A350587 0,3
%A A350587 _Seiichi Manyama_, Jan 18 2022