This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350592 #17 Dec 21 2024 01:04:46 %S A350592 2,4,5,7,9,13,85,222,249,1843 %N A350592 Integers m such that b(m) := 20^m*(5^(m+1) - 1)/4 + (20^m - 1)/19 is a prime. %C A350592 b(m) = Sum_{i=0..2m} 2^(m - |m - i|)*10^i. %C A350592 a(11) > 5000. - _Michael S. Branicky_, Jun 07 2022 %C A350592 a(11) > 50000. - _Michael S. Branicky_, Dec 21 2024 %e A350592 m b(m) n a(n) %e A350592 -- ------------------- -- ---- %e A350592 0 1 %e A350592 1 121 %e A350592 2 12421 1 2 %e A350592 3 1248421 %e A350592 4 124968421 2 4 %e A350592 5 12499368421 3 5 %e A350592 6 1249987368421 %e A350592 7 124999747368421 4 7 %e A350592 8 12499994947368421 %e A350592 9 1249999898947368421 5 9 %t A350592 Select[Range[250], PrimeQ[20^# * (5^(# + 1) - 1)/4 + (20^# - 1)/19] &] (* _Amiram Eldar_, Jan 08 2022 *) %o A350592 (Python) %o A350592 from sympy import isprime; {print(m, end = ', ') for m in range(2000) if isprime(20**m*(5**(m+1) - 1)//4 + (20**m - 1)//19)} %Y A350592 Cf. A002477, A016134, A260802. %K A350592 nonn,base,more %O A350592 1,1 %A A350592 _Ya-Ping Lu_, Jan 07 2022