This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350605 #20 May 06 2022 19:53:58 %S A350605 1,1,3,4,1,3,4,7,9,10,13,1,3,4,7,9,10,13,15,19,21,22,27,28,31,40,1,3, %T A350605 4,7,9,10,13,15,19,21,22,27,28,31,39,40,43,45,46,55,57,58,63,64,67,81, %U A350605 82,85,94,121,1,3,4,7,9,10,13,15,19,21,22,27,28,31,39,40,43,45,46,55,57,58,63,64,67,79,81,82,85,87,91,93,94,111,115,117,118,121,127,129,130,135,136,139,163,165,166,171,172,175,189,190,193,202,243,244,247,256,283,364 %N A350605 Irregular triangle read by rows: row n lists the elements of the set S_n in increasing order, where S_1 = {1}, and S_{n+1} is the set {k, 2*k+1, 3*k+1: k in S_n}. %C A350605 Row n has A350606(n) elements. %C A350605 The rows converge to A002977. %H A350605 Alois P. Heinz, <a href="/A350605/b350605.txt">Rows n = 1..15, flattened</a> %H A350605 David A. Klarner and Richard Rado, <a href="https://www.jstor.org/stable/2318772">Linear combinations of sets of consecutive integers</a>, The American Mathematical Monthly, Vol. 80, No. 9 (1973), pp. 985-989. %e A350605 The first few sets S_n are: %e A350605 [1], %e A350605 [1, 3, 4], %e A350605 [1, 3, 4, 7, 9, 10, 13], %e A350605 [1, 3, 4, 7, 9, 10, 13, 15, 19, 21, 22, 27, 28, 31, 40], %e A350605 [1, 3, 4, 7, 9, 10, 13, 15, 19, 21, 22, 27, 28, 31, 39, 40, 43, 45, 46, 55, 57, 58, 63, 64, 67, 81, 82, 85, 94, 121], %e A350605 ... %p A350605 T:= proc(n) option remember; `if`(n=1, 1, sort( %p A350605 [map(k-> [k, 2*k+1, 3*k+1][], {T(n-1)})[]])[]) %p A350605 end: %p A350605 seq(T(n), n=1..6); # _Alois P. Heinz_, Jan 12 2022 %t A350605 T[n_] := T[n] = If[n==1, {1}, {#, 2#+1, 3#+1}& /@ T[n-1] // Flatten // %t A350605 Union]; %t A350605 Table[T[n], {n, 1, 6}] // Flatten (* _Jean-François Alcover_, May 06 2022, after _Alois P. Heinz_ *) %o A350605 (Python) %o A350605 from itertools import chain, islice %o A350605 def A350605_gen(): # generator of terms %o A350605 s = {1} %o A350605 while True: %o A350605 yield from sorted(s) %o A350605 s = set(chain.from_iterable((x,2*x+1,3*x+1) for x in s)) %o A350605 A350605_list = list(islice(A350605_gen(),30)) # _Chai Wah Wu_, Jan 12 2022 %Y A350605 Cf. A002977, A350604, A350606. %K A350605 nonn,look,tabf %O A350605 1,3 %A A350605 _N. J. A. Sloane_, Jan 12 2022