This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350637 #39 Mar 10 2022 04:56:22 %S A350637 1,4,1,8,4,1,15,8,4,1,21,15,8,4,1,33,21,15,8,4,1,41,33,21,15,8,4,1,56, %T A350637 41,33,21,15,8,4,1,69,56,41,33,21,15,8,4,1,87,69,56,41,33,21,15,8,4,1, %U A350637 99,87,69,56,41,33,21,15,8,4,1,127,99,87,69,56,41,33,21,15,8,4,1 %N A350637 Triangle read by rows: T(n,k) in which row n lists the first n terms of A024916 in reverse order, 1 <= k <= n. %C A350637 T(n,k) is the number of cubic cells (or cubes) in the k-th level starting from the base of the stepped pyramid with n levels described in A245092 (see example). %H A350637 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the stepped pyramid (first 16 levels)</a> %F A350637 T(n,k) = A024916(A004736(n,k)). %F A350637 T(n,k) = T(n,k) = A024916(n-k+1). %F A350637 T(n,k) = Sum_{j=1..n} A272172(j,k). %e A350637 Triangle begins: %e A350637 1; %e A350637 4, 1; %e A350637 8, 4, 1; %e A350637 15, 8, 4, 1; %e A350637 21, 15, 8, 4, 1; %e A350637 33, 21, 15, 8, 4, 1; %e A350637 41, 33, 21, 15, 8, 4, 1; %e A350637 56, 41, 33, 21, 15, 8, 4, 1; %e A350637 69, 56, 41, 33, 21, 15, 8, 4, 1; %e A350637 87, 69, 56, 41, 33, 21, 15, 8, 4, 1; %e A350637 99, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1; %e A350637 127, 99, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1; %e A350637 ... %e A350637 For n = 9 the lateral view and top view of the stepped pyramid described in A245092 look as shown below: %e A350637 _ %e A350637 9 1 |_|_ %e A350637 8 4 |_ _|_ %e A350637 7 8 |_ _|_|_ %e A350637 6 15 |_ _ _| |_ %e A350637 5 21 |_ _ _|_ _|_ %e A350637 4 33 |_ _ _ _| | |_ %e A350637 3 41 |_ _ _ _|_|_ _|_ %e A350637 2 56 |_ _ _ _ _|_|_ |_ %e A350637 1 69 |_ _ _ _ _|_ _|_ _| %e A350637 . %e A350637 Level Row 9 Lateral view of %e A350637 k T(9,k) the stepped pyramid %e A350637 . %e A350637 _ _ _ _ _ _ _ _ _ %e A350637 |_| | | | | | | | | %e A350637 |_ _|_| | | | | | | %e A350637 |_ _| _|_| | | | | %e A350637 |_ _ _| _|_| | | %e A350637 |_ _ _| _| _ _|_| %e A350637 |_ _ _ _| _| | %e A350637 |_ _ _ _| |_ _| %e A350637 |_ _ _ _ _| %e A350637 |_ _ _ _ _| %e A350637 . %e A350637 Top view of %e A350637 the stepped pyramid %e A350637 . %e A350637 For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the stepped pyramid, so T(9,1) = 69. %e A350637 For n = 9 and k = 9 there is only one cubic cell in the level k = 9 (the top) of the stepped pyramid, so T(9,9) = 1. %e A350637 The volume of the stepped pyramid (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000027 hence it's equal to A175254(9) = 248, equaling the sum of the 9th row of triangle. %t A350637 Join@@Array[Reverse@Array[Sum[#-Mod[#,m],{m,#}]&,#]&,12] (* _Giorgos Kalogeropoulos_, Jan 12 2022 *) %o A350637 (PARI) row(n) = Vecrev(vector(n, k, sum(i=1, k, k\i*i))); \\ _Michel Marcus_, Jan 22 2022 %Y A350637 Column k gives A024916 starting in row k. %Y A350637 Row sums give A175254. %Y A350637 Cf. A340423 (analog for the tower described in A221529). %Y A350637 Cf. A000027, A000203, A004736, A196020, A235791, A236104, A237591, A237593, A245092, A262626, A272172. %K A350637 nonn,tabl %O A350637 1,2 %A A350637 _Omar E. Pol_, Jan 09 2022