A350655 a(n) is the least positive number that can be written as p^2 + p*q + q^2 in exactly n ways where p and q are primes and p <= q.
1, 12, 147, 57603, 160797, 4611243, 36822513, 878112417, 2069618187, 9891199227, 9098192883, 27885254943, 73104587283, 132014176203, 3457814397303, 1449081095007, 5644476547437, 9051074413563, 31516441411377, 8343886414773, 5272121828883
Offset: 0
Examples
a(3) = 57603 as 57603 has the three representations 57603 = 2^2 + 2*239 + 239^2 = 31^2 + 31*223 + 223^2 = 101^2 + 101*173 + 173^2 and no smaller number has this property.
Crossrefs
Cf. A349987.
Programs
-
Maple
N:= 10^9: Q:= Vector(N,datatype=integer[4]): P:= select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]): T:= Array(0..7): T[0]:= 1: nP:= nops(P): for i from 1 to nP do for j from 1 to i do v:= P[i]^2 + P[i]*P[j] + P[j]^2; if v > N then break fi; Q[v]:= Q[v]+1; if T[Q[v]] = 0 or v < T[Q[v]] then T[Q[v]]:= v fi od od: convert(T,list);
Extensions
a(8) from Jon E. Schoenfield, Jan 13 2022
a(9)-a(20) from Martin Ehrenstein, Jan 24 2022
Comments