cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350660 a(n) is the average number of key comparisons, rounded to the nearest integer, required to sort n records with distinct keys using bubble sort (Algorithm B in Don Knuth's TAOCP Vol. 3).

This page as a plain text file.
%I A350660 #11 Feb 02 2022 07:25:36
%S A350660 1,3,5,9,13,18,24,31,39,48,58,69,80,93,107,121,137,153,171,189,209,
%T A350660 229,251,273,297,321,346,373,400,428,458,488,519,551,584,619,654,690,
%U A350660 727,765,804,845,886,928,971,1015,1060,1106,1153,1201,1250,1300,1351,1403
%N A350660 a(n) is the average number of key comparisons, rounded to the nearest integer, required to sort n records with distinct keys using bubble sort (Algorithm B in Don Knuth's TAOCP Vol. 3).
%D A350660 D. E. Knuth, The Art of Computer Programming Second Edition. Vol. 3, Sorting and Searching. Chapter 5.2.2 Sorting by Exchanging, pages 106-109, 128-130. Addison-Wesley, Reading, MA, 1998.
%F A350660 a(n) = round(b(n)).
%F A350660 b(n) = binomial(n+1,2) - A190186(n)/A190187(n).
%F A350660 b(n) = binomial(m,2) - ((m/2)*(log(m) + gamma +log(2)) - 2*sqrt(2*Pi*m)/3 + 49/36 + O(n^(-1/2))) with gamma = A001620, and m = n + 1 (Knuth's asymptotic formula (37), TAOCP vol. 3, page 130).
%F A350660 a(n)/n^2 -> 1/2 for n -> infinity.
%e A350660         n        b(n)
%e A350660         |         |         a(n)=
%e A350660         |         |      round(b(n))
%e A350660         |         |           |   b(n)/n^2
%e A350660         2        1/1          1   0.2500
%e A350660         3        8/3          3   0.2963
%e A350660         4       31/6          5   0.3229
%e A350660         5      128/15         9   0.3413
%e A350660         6     1151/90        13   0.3552
%e A350660         7    11309/630       18   0.3663
%e A350660         8    17303/720       24   0.3755
%e A350660         9  1408073/45360     31   0.3832
%e A350660        10  2526503/64800     39   0.3899
%e A350660       100                  4768   0.4768
%e A350660      1000                496458   0.4965
%e A350660     10000                         0.4995
%e A350660    100000                         0.4999
%e A350660   1000000                         0.5000
%Y A350660 Cf. A001620, A190186, A190187, A190194, A350428, A350568, A350569.
%K A350660 nonn
%O A350660 2,2
%A A350660 _Hugo Pfoertner_, Feb 01 2022