cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350663 Numerators of Conway's POLYGAME.

This page as a plain text file.
%I A350663 #27 Feb 20 2022 23:09:13
%S A350663 583,629,437,82,615,371,1,53,43,23,341,41,47,29,37,37,299,47,161,527,
%T A350663 159,1,1,1
%N A350663 Numerators of Conway's POLYGAME.
%C A350663 These rational numbers represent a FRACTRAN program capable of calculating any computable function.
%C A350663 If, when started at c*2^(2^k), the program stops at 2^(2^m), then c encodes the computable function f_c, and f_c(k) = m, where c, k and m are nonnegative integers.
%C A350663 In the linked work Conway lists some values of c (which he calls "catalog numbers") encoding various simple functions, including the (extremely large) value of c for computing the k-th digit in the decimal expansion of Pi.
%H A350663 J. H. Conway, "FRACTRAN: A Simple Universal Programming Language for Arithmetic", in T. M. Cover and B. Gopinath, eds, <a href="https://doi.org/10.1007/978-1-4612-4808-8_2">Open Problems in Communication and Computation</a>, Springer, New York, NY, 1987, pp. 4-26.
%H A350663 J. H. Conway, "FRACTRAN: A Simple Universal Programming Language for Arithmetic", in J. C. Lagarias, ed., <a href="http://www.ams.org/bookstore-getitem/item=mbk-78">The Ultimate Challenge: The 3x+1 Problem</a>, American Mathematical Society, 2010, pp. 249-264.
%H A350663 Wikipedia, <a href="https://en.wikipedia.org/wiki/FRACTRAN">FRACTRAN</a>.
%Y A350663 Cf. A202138, A350555, A350664 (denominators).
%K A350663 nonn,frac,fini,full
%O A350663 1,1
%A A350663 _Paolo Xausa_, Jan 10 2022