This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350678 #15 Jan 05 2025 19:51:42 %S A350678 0,1,3,6,14,35,69,158,302,679,1666,3263,7444,18390,36101,82469,157494, %T A350678 353912,868141,1700181,3878490,7403068,16630533,40788350,79876519, %U A350678 182210674,450124970,883619407,2018522577,3854834480,8662361456,21248630481,41613641555,94929932728,234513795173 %N A350678 Partial sums of A185381. %H A350678 Martin Griffiths, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/53-3/GriffithsZeck03072015.pdf">The Zeckendorf Representation of a Beatty-Related Fibonacci Sum</a>, Fibonacci Quart. 53 (2015), no. 3, 230-236. %F A350678 a(n) = Sum_{k=1..n} A185381(k). %t A350678 f[n_] := Fibonacci[Floor[GoldenRatio * n]]; Accumulate @ Array[f, 35, 0] (* _Amiram Eldar_, Jan 11 2022 *) %o A350678 (PARI) B(n) = (n+sqrtint(5*n^2))\2; \\ A000201 %o A350678 f(n) = fibonacci(B(n)); \\ A185381 %o A350678 a(n) = sum(k=1, n, f(k)); %o A350678 (Python) %o A350678 from math import isqrt %o A350678 from sympy import fibonacci %o A350678 def A350678(n): return sum(fibonacci((i+isqrt(5*i**2))//2) for i in range(n+1)) # _Chai Wah Wu_, Jan 11 2022 %Y A350678 Cf. A000045, A000201, A185381. %K A350678 nonn %O A350678 0,3 %A A350678 _Michel Marcus_, Jan 11 2022