This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350695 #40 Jan 30 2022 15:58:34 %S A350695 1,0,1,0,1,0,1,1,4,5,9,15,26,45,77,137,243,434,774,1408,2554,4667, %T A350695 8627,15927,29559,54867,101688,189425,355315,668598,1264180,2395462, %U A350695 4506221,8507311,16084405,30545142,57898862,110199367,209957460,400430494,765333684 %N A350695 Number of solutions to +-2 +- 3 +- 5 +- 7 +- ... +- prime(n-1) = n. %F A350695 a(n) = [x^n] Product_{k=1..n-1} (x^prime(k) + 1/x^prime(k)). %t A350695 Table[SeriesCoefficient[Product[x^Prime[k] + 1/x^Prime[k], {k, n - 1}], {x, 0, n}], {n, 0, 40}] (* _Stefano Spezia_, Jan 30 2022 *) %o A350695 (Python) %o A350695 from sympy import sieve, primerange %o A350695 from functools import cache %o A350695 @cache %o A350695 def b(n, i): %o A350695 maxsum = 0 if i < 2 else sum(p for p in primerange(2, sieve[i-1]+1)) %o A350695 if n > maxsum: return 0 %o A350695 if i < 2: return 1 %o A350695 return b(n+sieve[i-1], i-1) + b(abs(n-sieve[i-1]), i-1) %o A350695 def a(n): return b(n, n) %o A350695 print([a(n) for n in range(41)]) # _Michael S. Branicky_, Jan 29 2022 %Y A350695 Cf. A000040, A022894, A058377, A063890, A113040, A261061, A350404. %K A350695 nonn %O A350695 0,9 %A A350695 _Ilya Gutkovskiy_, Jan 29 2022