A350696 a(n) is the least nonnegative integer k such that 2^n + k is a safe prime.
1, 3, 7, 15, 19, 39, 7, 51, 163, 15, 31, 231, 103, 75, 7, 195, 499, 99, 127, 627, 955, 555, 691, 87, 679, 99, 1411, 351, 799, 135, 91, 771, 79, 951, 667, 975, 1183, 1311, 667, 315, 955, 759, 2011, 9315, 4243, 1575, 907, 1527, 3943, 2091, 1927, 75, 1879
Offset: 2
Keywords
Examples
a(6)=19 because 2^6+19=83 is the smallest safe prime greater than 64 of the form p=2q+1 where p and q are both primes.
Links
- Mark Andreas, Table of n, a(n) for n = 2..5120
Programs
-
Mathematica
safeQ[p_] := And @@ PrimeQ[{p, (p - 1)/2}]; a[n_] := Module[{k = 2^n + 1}, While[! safeQ[k], k++]; k -= 2^n]; Array[a, 50, 2] (* Amiram Eldar, Jan 12 2022 *)
-
PARI
a(n) = {my(k=0); until (isprime(2^n+k) && isprime((2^n+k-1)/2), k++); return (k); }
Comments