A350698 Consider the positive squares summing to n as obtained by the greedy algorithm; a(n) is the least of these squares.
1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 4, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 25, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 4, 1, 64, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 4, 1, 1, 16, 81, 1, 1, 1
Offset: 1
Keywords
Examples
For n = 13: - 13 = 3^2 + 2^2, - so a(13) = 2^2.
Programs
-
PARI
a(n, e=2) = { my (r=0); while (n, r=sqrtnint(n, e); n-=r^e); r^e }