This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350700 #37 Mar 17 2022 18:11:35 %S A350700 -1,1,1,0,2,1,-2,2,1,-2,4,1,-4,2,3,-2,6,3,-4,-3,3,-2,1,7,-4,-5,1,4,3, %T A350700 5,-4,1,-4,4,1,-2,0,3,-6,-2,5,6,0,3,6,-1,11,-6,-9,3,2,-1,-1,-2,-5,6,4, %U A350700 -7,8,0,-9,-4,10,3,-4,6,-7,6,-17,-1,-2,-5,1,4,-3 %N A350700 a(n) is the number of 1's minus the number of 0's in A004685(n). %H A350700 Karl-Heinz Hofmann, <a href="/A350700/b350700.txt">Table of n, a(n) for n = 0..10000</a> %F A350700 a(n) = A145037(A000045(n)) for n >= 1. %F A350700 a(n) = 0 if and only if n is in A214852. - _Amiram Eldar_, Jan 22 2022 %e A350700 A004685(0) = 0; this term has 0 ones and 1 zero. So a(0) = 0 - 1 = -1. %e A350700 A004685(7) = 1101; this term has 3 ones and 1 zero. So a(7) = 3 - 1 = 2. %t A350700 a[n_] := Subtract @@ DigitCount[Fibonacci[n], 2, {1, 0}]; Array[a, 75, 0] (* _Amiram Eldar_, Jan 22 2022 *) %o A350700 (Python) from sympy import fibonacci %o A350700 print([(bin(fibonacci(n))[2:].count("1") - bin(fibonacci(n))[2:].count("0")) for n in range (0,100)]) %Y A350700 Cf. A000045, A004685, A011373, A145037, A177718, A214852. %K A350700 sign,base %O A350700 0,5 %A A350700 _Karl-Heinz Hofmann_, Jan 18 2022