A350702 Primes p such that 14*p + 1 divides 2^p - 1.
929, 1433, 2393, 2609, 2657, 4373, 4793, 6029, 7529, 10133, 10433, 10949, 10973, 13049, 13109, 16829, 18869, 20873, 22349, 23417, 24137, 26717, 27737, 27893, 28433, 28517, 30977, 33809, 33857, 37217, 38189, 38237, 39209, 39749, 41453, 41813, 42569, 43313, 43613
Offset: 1
Keywords
Examples
See LINKS for example of a(13).
Links
- Karl-Heinz Hofmann, Mersenne(p) table with k = 7 and, if they exist, additional k < 7 plus their corresponding factors.
- mersenne.ca, a(13) = M10973 Mersenne number exponent details.
- mersenne.ca, a(1..995) at GIMPS with k = 7 and Exponent 3..2000000.
Crossrefs
Programs
-
Mathematica
Select[Range[45000], PrimeQ[#] && PowerMod[2, #, 14*# + 1] == 1 &] (* Amiram Eldar, Jan 27 2022 *)
-
PARI
forprime(p=1, 1e6, if (Mod(2, p*14+1)^p==1, print1(p,", ")))
-
Python
from sympy import sieve print([p for p in sieve[1:1000000] if pow(2, p, 14*p+1) == 1])
Comments