This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350704 #33 Mar 17 2022 13:52:34 %S A350704 49,91,119,133,169,217,221,247,259,289,301,323,329,343,361,403,413, %T A350704 427,469,481,497,511,527,553,559,589,611,629,637,679,703,707,721,731, %U A350704 749,763,767,793,799,817,833,871,889,893,923,931,949,959,961,973,1003,1027,1037,1043 %N A350704 Composite numbers that have no Sophie Germain prime factors. %C A350704 A157342 is a subsequence. First differs at a(14) = 343. %C A350704 A350705 is a subsequence too. %H A350704 Karl-Heinz Hofmann, <a href="/A350704/b350704.txt">Table of n, a(n) for n = 1..10000</a> %e A350704 a(2) = 91 = 7 * 13 and {7, 13} are not in A005384. %t A350704 Select[Range[1000], CompositeQ[#] && AllTrue[FactorInteger[#][[;; , 1]], !PrimeQ[2*#1 + 1] &] &] (* _Amiram Eldar_, Feb 12 2022 *) %o A350704 (Python) %o A350704 from sympy import primefactors, isprime %o A350704 print([n for n in range(2,1044) if not isprime(n) and all(not isprime(p*2+1) for p in primefactors(n))]) %o A350704 (PARI) isok(m) = if ((m>1) && !isprime(m), !#select(x->isprime(2*x+1), factor(m)[,1])); \\ _Michel Marcus_, Feb 11 2022 %Y A350704 Cf. A157342, A005384, A053176, A350705, A350706. %K A350704 nonn %O A350704 1,1 %A A350704 _Karl-Heinz Hofmann_, Feb 11 2022