cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350706 Composite numbers that have no "safe prime" factors.

This page as a plain text file.
%I A350706 #20 Mar 17 2022 13:50:53
%S A350706 4,6,8,9,12,16,18,24,26,27,32,34,36,38,39,48,51,52,54,57,58,62,64,68,
%T A350706 72,74,76,78,81,82,86,87,93,96,102,104,106,108,111,114,116,117,122,
%U A350706 123,124,128,129,134,136,142,144,146,148,152,153,156,158,159,162,164,169,171
%N A350706 Composite numbers that have no "safe prime" factors.
%C A350706 A350705 is a subsequence.
%H A350706 Karl-Heinz Hofmann, <a href="/A350706/b350706.txt">Table of n, a(n) for n = 1..10000</a>
%e A350706 a(5) = 12 = 2 * 2 * 3 and {2, 3} are not in A005385.
%t A350706 Select[Range[200], CompositeQ[#] && AllTrue[FactorInteger[#][[;; , 1]], ! PrimeQ[(#1 - 1)/2] &] &] (* _Amiram Eldar_, Feb 20 2022 *)
%o A350706 (PARI) isok(m) = if ((m>1) && !isprime(m), !#select(x->isprime((x-1)\2), factor(m)[, 1]));
%o A350706 (Python)
%o A350706 from sympy import primefactors, isprime
%o A350706 print([n for n in range(4, 172) if not isprime(n) and all(not isprime((p-1)//2) for p in primefactors(n))])
%Y A350706 Cf. A350704, A350705, A005385.
%K A350706 nonn
%O A350706 1,1
%A A350706 _Karl-Heinz Hofmann_, Feb 20 2022