This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350709 #26 May 13 2022 10:12:10 %S A350709 1100,1010,1001,1100,1010,1001,1100,1010,1001,1100,2110,2020,2011, %T A350709 2110,2020,2011,2110,2020,2011,2110,2101,2011,2002,2101,2011,2002, %U A350709 2101,2011,2002,2101,2200,2110,2101,2200,2110,2101,2200 %N A350709 Modified Sisyphus function of order 3: a(n) is the concatenation of (number of digits of n)(number digits of n congruent to 0 modulo 3)(number of digits of n congruent to 1 modulo 3)(number of digits of n congruent to 2 modulo 3). %C A350709 If we start with n and repeatedly apply the map i -> a(i), we eventually get the cycle {4031, 4112, 4220} %D A350709 M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141. %e A350709 11 has two digits, both congruent to 1 modulo 3, so a(11) = 2020. %e A350709 a(20) = 2101. %e A350709 a(30) = 2200. %e A350709 a(1111123567) = 10262. %o A350709 (Python) %o A350709 def a(n): %o A350709 d, m = list(map(int, str(n))), [0, 0, 0] %o A350709 for di in d: m[di%3] += 1 %o A350709 return int(str(len(d)) + "".join(map(str, m))) %o A350709 print([a(n) for n in range(37)]) # _Michael S. Branicky_, Mar 28 2022 %Y A350709 Cf. A073053 (Sisyphus), A171797, A171798, A171813, A055642, A196563, A196564, A308002. %K A350709 nonn,base,easy %O A350709 0,1 %A A350709 _Matthew E. Coppenbarger_, Mar 28 2022