cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350710 Triangle read by rows formed from the coefficients in ascending order of the characteristic polynomial of the n X n matrix M(n) with entries M(n)[i,j] = i*j mod n+1.

This page as a plain text file.
%I A350710 #46 May 22 2022 14:19:26
%S A350710 1,-1,1,-3,-2,1,-16,-16,-2,1,0,100,-10,-10,1,-1296,0,324,-24,-13,1,0,
%T A350710 0,4116,392,-175,-14,1,0,-131072,16384,12288,-512,-352,-12,1,0,0,
%U A350710 -708588,0,44469,2592,-459,-24,1,0,0,16000000,800000,-760000,-12000,11000,-100,-45,1
%N A350710 Triangle read by rows formed from the coefficients in ascending order of the characteristic polynomial of the n X n matrix M(n) with entries M(n)[i,j] = i*j mod n+1.
%e A350710 Triangle begins:
%e A350710 n=0:     1;
%e A350710 n=1:    -1,   1;
%e A350710 n=2:    -3,  -2,    1;
%e A350710 n=3:   -16, -16,   -2,   1;
%e A350710 n=4:     0, 100,  -10, -10,    1;
%e A350710 n=5: -1296,   0,  324, -24,  -13,   1;
%e A350710 n=6:     0,   0, 4116, 392, -175, -14, 1;
%e A350710 For example, the characteristic polynomial associated to M(7) is
%e A350710   q^7 - 12*q^6 - 352*q^5 - 512*q^4 + 12288*q^3 + 16384*q^2 - 131072*q + 0;
%e A350710 so the seventh row of the triangle is
%e A350710   0, -131072, 16384, 12288, -512, -352, -12, 1.
%p A350710 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(LinearAlgebra[
%p A350710     CharacteristicPolynomial](Matrix(n, (i, j)-> irem(i*j, n+1)), x)):
%p A350710 seq(T(n), n=0..10);  # _Alois P. Heinz_, Mar 27 2022
%t A350710 Table[(-1)^(p + 1)*CoefficientList[CharacteristicPolynomial[Table[Mod[k*Table[i, {i, 1, p - 1}], p], {k, 1, p - 1}], x], x], {p, 2, 20}]
%o A350710 (PARI) row(n) = Vecrev(charpoly(matrix(n,n,i,j,i*j%(n+1)))); \\ _Kevin Ryde_, Mar 27 2022
%Y A350710 Cf. A352620 (matrices M).
%K A350710 sign,tabl
%O A350710 0,4
%A A350710 _Luca Onnis_, Mar 27 2022