cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A351179 Least positive integer m such that m^6*n = w^6 + x^3 + y^3 + z^3 for some nonnegative integers w,x,y,z.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 3, 1, 1, 1, 1, 5, 3, 3, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 3, 1, 1, 1, 1, 6, 3, 3, 3, 1, 1, 1, 5, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 6, 3, 2, 2, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 1, 2, 3, 1, 1, 1, 3, 3, 7, 3, 2, 1, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 04 2022

Keywords

Comments

a(n) always exists, because any positive rational number can be written as a sum of three cubes of positive rational numbers (see Richmond reference).
Aside from a(96) = 7 and a(850) = 8, a(n) <= 6 for n <= 10^6. - Charles R Greathouse IV, Feb 10 2022

Examples

			a(5) = 3 with 3^6*5 = 2^6 + 5^3 + 12^3 + 12^3.
a(12) = 5 with 5^6*12 = 3^6 + 19^3 + 34^3 + 52^3.
a(22) = 2 with 2^6*22 = 1^6 + 4^3 + 7^3 + 10^3.
a(31) = 6 with 6^6*31 = 0^6 + 4^3 + 15^3 + 113^3.
a(96) = 7 with 7^6*96 = 0^6 + 2^3 + 38^3 + 224^3.
a(101) = 4 with 4^6*101 = 3^6 + 22^3 + 39^3 + 70^3.
a(850) = 8 with 8^6*850 = 5^6 + 508^3 + 442^3 + 175^3.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Edition, Oxford Univ. Press, 1960. (See Theorem 234 on page 197.)

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
    tab={};Do[m=1;Label[bb];k=m^6;Do[If[CQ[k*n-w^6-x^3-y^3],tab=Append[tab,m];Goto[aa]],{w,0,(k*n)^(1/6)},{x,0,((k*n-w^6)/3)^(1/3)},{y,x,((k*n-w^6-x^3)/2)^(1/3)}];
    m=m+1;Goto[bb];Label[aa],{n,0,100}];Print[tab]

Formula

a(n) <= A351199(n)^2. - Charles R Greathouse IV, Feb 05 2022

A351199 Least positive integer m such that m^3*n = x^3 + y^3 + z^3 for some nonnegative integers x,y,z.

Original entry on oeis.org

1, 1, 1, 1, 15, 6, 5, 3, 1, 1, 1, 11, 39, 3, 3, 3, 1, 1, 4, 2, 2, 3, 18, 6, 1, 22, 28, 1, 1, 1, 29, 15, 15, 21, 3, 1, 1, 7, 7, 25, 3, 12, 6, 1, 2, 7, 2, 7, 5, 21, 6, 2, 25, 5, 1, 1, 3, 3, 45, 132, 6, 45, 1, 3, 1, 1, 1, 171, 6, 9, 2, 3, 1, 1, 54, 21, 18, 3, 13, 32, 1, 1, 10, 2, 7, 9, 3, 3, 6, 3, 11, 1, 1, 63, 3, 30, 21, 5, 4, 1, 12
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 04 2022

Keywords

Comments

a(n) always exists, because any positive rational number can be written as a sum of three cubes of positive rational numbers (see Richmond reference).

Examples

			a(4) = 15 with 15^3*4 = 12^3 + 17^3 + 19^3.
a(212) = 216 with 216^3*212 = 82^3 + 161^3 + 1287^3.
a(446) = 228 with 228^3*446 = 929^3 + 1287^3 + 1330^3.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Edition, Oxford Univ. Press, 1960. (See Theorem 234 on page 197.)

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
    tab={};Do[m=1; Label[bb]; k=m^3; Do[If[CQ[k*n-x^3-y^3], tab=Append[tab,m]; Goto[aa]],  {x, 0, ((k*n)/3)^(1/3)}, {y, x, ((k*n-x^3)/2)^(1/3)}];
    m=m+1; Goto[bb]; Label[aa], {n, 0, 100}]
  • PARI
    T=thueinit('x^3+1);
    has2(n)=n==0 || #select(v->min(v[1], v[2])>=0, thue(T, n))>0
    has3(n)=forstep(k=sqrtnint(n,3),sqrtnint(n\3,3),-1,if(has2(n-k^3),return(1)));0
    a(n)=my(m=1); while(!has3(m^3*n), m++); m \\ Charles R Greathouse IV, Feb 05 2022

Formula

a(n) >= sqrt(A351179(n)).

A351206 Least positive integer m such that n = x^4 + (y^4 + z^4 + 7*w^2)/m^4 for some nonnegative integers x,y,z,w with y <= z.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 4, 3, 1, 1, 1, 6, 2, 2, 10, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 4, 2, 4, 10, 1, 1, 2, 4, 2, 1, 1, 1, 3, 1, 3, 2, 2, 2, 2, 2, 1, 3, 4, 2, 2, 1, 1, 3, 1, 1, 1, 1, 2, 4, 2, 2, 3, 8, 10, 2, 2, 1, 10, 5, 1, 1, 1, 1, 1, 4, 2, 2, 8, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 04 2022

Keywords

Comments

Conjecture: a(n) exists for any nonnegative integer n.
This implies that each nonnegative rational number can be written as 7*w^2 + x^4 + y^4 + z^4 with w,x,y,z rational numbers.

Examples

			a(6) = 2 with 6 = 1^4 + (1^4 + 2^4 + 7*3^2)/2^4.
a(19) = 6 with 19 = 0^4 + (1^4 + 4^4 + 7*59^2)/6^4.
a(22) = 10 with 22 = 2^4 + (2^4 + 13^4 + 7*67^2)/10^4.
a(5797) = 20 with 5797 = 0^4 + (81^4 + 164^4 + 7*4797^2)/20^4.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[m=1; Label[bb]; k=m^4; Do[If[SQ[(k*(n-x^4)-y^4-z^4)/7], tab=Append[tab,m]; Goto[aa]],  {x, 0, n^(1/4)}, {y, 0, (k*(n-x^4)/2)^(1/4)},{z,y,(k*(n-x^4)-y^4)^(1/4)}]; m=m+1; Goto[bb]; Label[aa], {n,0,100}];Print[tab]

A351221 Least positive integer m such that m^6*n = x^6 + y^3 + z^2 for some nonnegative integers x,y,z.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 38, 1, 1, 1, 1, 1, 1, 18, 3, 1, 1, 1, 2, 8, 30, 14, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 3, 8, 3, 3, 1, 1, 1, 2, 2, 13, 1, 1, 1, 1, 1, 2, 2, 4, 1, 1, 2, 9, 2, 2, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 1, 11, 9, 2, 3, 1, 1, 1, 1, 1, 3, 3, 1, 26, 1, 2, 2, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 05 2022

Keywords

Comments

6-3-2 Conjecture: a(n) exists for any nonnegative integer n. Equivalently, each nonnegative rational number can be written as x^6 + y^3 + z^2 with x,y,z nonnegative rational numbers.

Examples

			a(6) = 1 with 1^6*6 = 1^6 + 1^3 + 2^2.
a(7) = 38 with 38^6*7 = 42^6 + 1935^3 + 91337^2.
a(21) = 30 with 30^6*21 = 26^6 + 2399^3 + 34545^2.
a(22) = 14 with 14^6*22 = 0^6 + 447^3 + 8737^2.
a(96) = 26 with 26^6*96 = 21^6 + 2711^3 + 98212^2.
a(1120) = 38 with 38^6*1120 = 69^6 + 11499^3 + 1320550^2.
a(2091) = 58 with 58^6*2091 = 161^6 + 39043^3 + 1633994^2.
a(3855) = 51 with 51^6*3855 = 34^6 + 40775^3 + 199008^2.
a(3991) = 45 with 45^6*3991 = 74^6 + 3715^3 + 5738018^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[m=1;Label[bb];k=m^6;Do[If[SQ[k*n-x^6-y^3],tab=Append[tab,m];Goto[aa]],{x,0,(k*n)^(1/6)},{y,0,(k*n-x^6)^(1/3)}];
    m=m+1;Goto[bb];Label[aa],{n,0,100}];Print[tab]
Showing 1-4 of 4 results.