cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350719 a(n) = Sum_{k=0..n} k! * 2^k * k^n * Stirling1(n,k).

This page as a plain text file.
%I A350719 #19 Feb 04 2022 08:22:45
%S A350719 1,2,30,1108,76372,8463328,1375868768,308440047648,91189383264864,
%T A350719 34376022491122368,16093445542120281792,9160424435706947112576,
%U A350719 6230035512106223752576896,4989402076922846372194268160,4647526704475074504983564884992
%N A350719 a(n) = Sum_{k=0..n} k! * 2^k * k^n * Stirling1(n,k).
%H A350719 Seiichi Manyama, <a href="/A350719/b350719.txt">Table of n, a(n) for n = 0..221</a>
%F A350719 E.g.f.: Sum_{k>=0} (2 * log(1 + k*x))^k.
%t A350719 a[0] = 1; a[n_] := Sum[k! * 2^k * k^n * StirlingS1[n, k], {k, 1, n}]; Array[a, 15, 0] (* _Amiram Eldar_, Feb 03 2022 *)
%o A350719 (PARI) a(n) = sum(k=0, n, k!*2^k*k^n*stirling(n, k, 1));
%o A350719 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (2*log(1+k*x))^k)))
%Y A350719 Cf. A320083, A350720.
%Y A350719 Cf. A088501, A195005, A350721.
%K A350719 nonn
%O A350719 0,2
%A A350719 _Seiichi Manyama_, Feb 03 2022