This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350733 #8 Jan 29 2022 22:31:00 %S A350733 1,1,1,1,1,1,3,2,1,1,4,10,12,10,4,1,1,4,13,41,78,131,144,107,50,12,1, %T A350733 1,4,14,55,187,539,1292,2500,3817,4512,4112,2740,1274,376,56,1,1,4,14, %U A350733 58,240,1009,3643,11815,32538,76145,149724,247329,340364,387834,361450,271177,159872,71320,22690,4604,456 %N A350733 Triangle read by rows: T(n,k) is the number of oriented graphs on n unlabeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2. %H A350733 Andrew Howroyd, <a href="/A350733/b350733.txt">Table of n, a(n) for n = 0..1350</a> (rows 0..20) %e A350733 Triangle begins: %e A350733 [0] 1; %e A350733 [1] 1; %e A350733 [2] 1, 1; %e A350733 [3] 1, 1, 3, 2; %e A350733 [4] 1, 1, 4, 10, 12, 10, 4; %e A350733 [5] 1, 1, 4, 13, 41, 78, 131, 144, 107, 50, 12; %e A350733 ... %o A350733 (PARI) %o A350733 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A350733 edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2))} %o A350733 row(n)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+2*x^i)); Vecrev(s/n!)} %o A350733 { for(n=0, 6, print(row(n))) } %Y A350733 Row sums are A001174. %Y A350733 Cf. A350734. %K A350733 nonn,tabf %O A350733 0,7 %A A350733 _Andrew Howroyd_, Jan 13 2022