This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350734 #9 Jan 29 2022 15:00:04 %S A350734 1,0,1,0,0,3,2,0,0,0,8,12,10,4,0,0,0,0,27,68,127,144,107,50,12,0,0,0, %T A350734 0,0,91,395,1144,2393,3767,4500,4112,2740,1274,376,56,0,0,0,0,0,0,350, %U A350734 2170,9139,28606,71583,145600,244589,339090,387458,361394,271177,159872,71320,22690,4604,456 %N A350734 Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n unlabeled nodes with k arcs, n >= 1, k = 0..n*(n-1)/2. %H A350734 Andrew Howroyd, <a href="/A350734/b350734.txt">Table of n, a(n) for n = 1..1350</a> (rows 1..20) %e A350734 Triangle begins: %e A350734 [1] 1; %e A350734 [2] 0, 1; %e A350734 [3] 0, 0, 3, 2; %e A350734 [4] 0, 0, 0, 8, 12, 10, 4; %e A350734 [5] 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12; %e A350734 ... %o A350734 (PARI) %o A350734 InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)} %o A350734 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A350734 edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2))} %o A350734 G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+2*x^i)); s/n!} %o A350734 row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n))} %o A350734 { for(n=1, 6, print(row(n))) } %Y A350734 Row sums are A086345. %Y A350734 Column sums are A350915. %Y A350734 Leading diagonal is A000238. %Y A350734 The labeled version is A350732. %Y A350734 Cf. A054733, A350733, A350750, A350914 (transpose). %K A350734 nonn,tabf %O A350734 1,6 %A A350734 _Andrew Howroyd_, Jan 13 2022