This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350740 #43 Jun 22 2024 01:41:12 %S A350740 1,32,200,528,1280,2744,4272,6592,10144,15048,19824,25824,34744,43520, %T A350740 55184,64680,80864,99184,115616,135144,157344,185872,207304,239600, %U A350740 272960,310240,351096,385392,433040,485528,531728,583696,646056,714800,779488,842928 %N A350740 Number of integer points (x, y, z, w) at distance <= 1/2 from 3-sphere of radius n. %H A350740 Chai Wah Wu, <a href="/A350740/b350740.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..200 from Robert Israel) %F A350740 a(n) = A046895(n^2+n)-A046895(n^2-n) for n > 0. - _Chai Wah Wu_, Jun 21 2024 %p A350740 N:= 40: # for a(0)..a(N) %p A350740 V:= Array(0..N): %p A350740 for x from 0 to N do %p A350740 for y from x to N do %p A350740 for z from y to N do %p A350740 for w from z to N do %p A350740 S:= {x,y,z,w}; %p A350740 L:= [x,y,z,w]; %p A350740 m:= round(sqrt(x^2 + y^2 + z^2 + w^2)); %p A350740 if m > N then next fi; %p A350740 f:= 4!/mul(numboccur(s,L)!, s = S) * 2^(4 - numboccur(0,[x,y,z,w])); %p A350740 V[m]:= V[m] + f; %p A350740 od od od od; %p A350740 convert(V,list); # _Robert Israel_, Mar 08 2024 %o A350740 (Python) %o A350740 from itertools import product %o A350740 for R in range(100): %o A350740 c = 0 %o A350740 for s in product(range(2*R + 1), repeat = 4): %o A350740 if (2*R - 1)**2 <= 4*sum((i - R)**2 for i in s) <= (2*R + 1)**2: c += 1 %o A350740 print(c if R != 0 else 1, end = ', ') %o A350740 (Python) %o A350740 from itertools import combinations_with_replacement %o A350740 from math import prod %o A350740 from collections import Counter %o A350740 def A350740(n): %o A350740 if n == 0: return 1 %o A350740 x, y = (2*n-1)**2, (2*n+1)**2 %o A350740 return sum(24//prod((1,1,2,6,24)[d] for d in q.values())<<4-q[0] for q in map(Counter,combinations_with_replacement(range(n+1),4)) if x <= sum(b*a**2 for a, b in q.items())<<2 <= y) # _Chai Wah Wu_, Jun 20 2024 %o A350740 (Python) %o A350740 # Uses Python code in A046895 %o A350740 def A350740(n): return A046895(n*(n+1))-A046895(n*(n-1)) if n else 1 # _Chai Wah Wu_, Jun 21 2024 %Y A350740 A 4-dimensional version of A016728. %Y A350740 Cf. A046895. %K A350740 nonn %O A350740 0,2 %A A350740 _Jeongseop Lee_, Jan 12 2022