cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350747 Number of iterations required to terminate trajectory mapping described in A349824.

This page as a plain text file.
%I A350747 #47 Feb 24 2022 19:31:42
%S A350747 0,1,0,0,8,0,9,0,7,4,8,0,3,0,7,8,7,0,6,0,1,2,2,0,5,2,1,0,0,0,0,0,6,0,
%T A350747 7,6,4,0,6,7,3,0,5,0,2,1,6,0,8,1,5,4,5,0,3,7,6,3,11,0,9,0,10,8,11,5,9,
%U A350747 0,9,6,6,0,10
%N A350747 Number of iterations required to terminate trajectory mapping described in A349824.
%C A350747 From _Wolfdieter Lang_, Feb 09 2022: (Start)
%C A350747 Conjecture from A349824: the iteration f: n -> A349824(n) becomes periodic for each n >= 0.
%C A350747 a(n) gives the number of steps from n to reach the first member of the periodic part. There are the two length 2 periods: (33,28) and (28,33). (End)
%C A350747 It appears that the only nonprime values of n for which a(n) = 0 are {0, 27, 28, 30, 33}.
%e A350747 For n = 6, the trajectory is 6, 10, 14, 18, 24, 36, 40, 44, 45, 33, ... so a(6) = 9.
%e A350747 For n = 24, the trajectory is 24, 36, 40, 44, 45, 33, ... so a(24) = 5.
%p A350747 with(numtheory): A001222:= n -> bigomega(n):
%p A350747 A001414:= proc(n) local e, j; e:=ifactors(n)[2]; add(e[j][1] * e[j][2],j= 1..nops(e)) end proc :
%p A350747 B := n-> A001414(n) * A001222(n):
%p A350747 g:= proc(n) if isprime(n) or n=0 or n=27 or n=28 or n=30 or n=33 then return 0 else return 1 fi end proc:
%p A350747 F:= proc(n) local v,i; v:=n;if n = 1 then return 1 else if g(n)=0 then return 0 else for i from 0 to 100 do v:= B(v);if  v=27 or v=28 or v=30 or v=33 then return i+1; i:=100 fi od fi fi end proc :
%p A350747 Seq(F(n), n=0..100)
%Y A350747 Cf. A349824, A001414, A001222.
%K A350747 nonn
%O A350747 0,5
%A A350747 _Gary Detlefs_, Jan 13 2022
%E A350747 More terms from _Jinyuan Wang_, Jan 15 2022
%E A350747 Edited by _Wolfdieter Lang_, Feb 09 2022