This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350747 #47 Feb 24 2022 19:31:42 %S A350747 0,1,0,0,8,0,9,0,7,4,8,0,3,0,7,8,7,0,6,0,1,2,2,0,5,2,1,0,0,0,0,0,6,0, %T A350747 7,6,4,0,6,7,3,0,5,0,2,1,6,0,8,1,5,4,5,0,3,7,6,3,11,0,9,0,10,8,11,5,9, %U A350747 0,9,6,6,0,10 %N A350747 Number of iterations required to terminate trajectory mapping described in A349824. %C A350747 From _Wolfdieter Lang_, Feb 09 2022: (Start) %C A350747 Conjecture from A349824: the iteration f: n -> A349824(n) becomes periodic for each n >= 0. %C A350747 a(n) gives the number of steps from n to reach the first member of the periodic part. There are the two length 2 periods: (33,28) and (28,33). (End) %C A350747 It appears that the only nonprime values of n for which a(n) = 0 are {0, 27, 28, 30, 33}. %e A350747 For n = 6, the trajectory is 6, 10, 14, 18, 24, 36, 40, 44, 45, 33, ... so a(6) = 9. %e A350747 For n = 24, the trajectory is 24, 36, 40, 44, 45, 33, ... so a(24) = 5. %p A350747 with(numtheory): A001222:= n -> bigomega(n): %p A350747 A001414:= proc(n) local e, j; e:=ifactors(n)[2]; add(e[j][1] * e[j][2],j= 1..nops(e)) end proc : %p A350747 B := n-> A001414(n) * A001222(n): %p A350747 g:= proc(n) if isprime(n) or n=0 or n=27 or n=28 or n=30 or n=33 then return 0 else return 1 fi end proc: %p A350747 F:= proc(n) local v,i; v:=n;if n = 1 then return 1 else if g(n)=0 then return 0 else for i from 0 to 100 do v:= B(v);if v=27 or v=28 or v=30 or v=33 then return i+1; i:=100 fi od fi fi end proc : %p A350747 Seq(F(n), n=0..100) %Y A350747 Cf. A349824, A001414, A001222. %K A350747 nonn %O A350747 0,5 %A A350747 _Gary Detlefs_, Jan 13 2022 %E A350747 More terms from _Jinyuan Wang_, Jan 15 2022 %E A350747 Edited by _Wolfdieter Lang_, Feb 09 2022