cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350766 Reversed sum of the two previous terms, with a(1) = 1 and a(2) = 11.

This page as a plain text file.
%I A350766 #10 Jan 15 2022 04:32:21
%S A350766 1,11,21,23,44,76,21,79,1,8,9,71,8,97,501,895,6931,6287,81231,81578,
%T A350766 908261,938989,527481,746641,2214721,2631692,3146484,6718775,9525689,
%U A350766 46444261,5996955,61214425,8311276,10752596,27836091,78688583
%N A350766 Reversed sum of the two previous terms, with a(1) = 1 and a(2) = 11.
%C A350766 Given two initial terms, sum the terms and reverse the digits of the sum. Then repeat.
%C A350766 Related to A014258, the Iccanobif numbers, but with initial terms 1 and 11 rather than 0 and 1.
%t A350766 Clear[ BiF ]; BiF[ 0 ]=1; BiF[ 1 ]=11; BiF[ n_Integer ] := BiF[ n ]=Plus@@(IntegerDigits[ BiF[ n-2 ]+BiF[ n-1 ], 10 ]//(#*Array[ 10^#&, Length[ # ], 0 ])&); Array[ BiF, 40, 0 ]
%t A350766 nxt[{a_, b_}]:={b, FromDigits[Reverse[IntegerDigits[a+b]]]}; Transpose[ NestList[ nxt, {0, 1}, 40]][[1]]
%o A350766 (Python)
%o A350766 terms = [1, 11]
%o A350766 for i in range(100):
%o A350766     terms.append(int(str(terms[-1]+terms[-2])[::-1]))
%o A350766 print(terms) # _Gleb Ivanov_, Jan 14 2022
%Y A350766 Cf. A014258 but with initial terms 1 and 11 rather than 0 and 1.
%K A350766 nonn,base,easy
%O A350766 1,2
%A A350766 _Tim Ricchuiti_, Jan 14 2022