This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350770 #46 May 04 2024 19:41:49 %S A350770 0,1,1,3,2,3,7,4,4,7,15,8,6,8,15,31,16,10,10,16,31,63,32,18,14,18,32, %T A350770 63,127,64,34,22,22,34,64,127,255,128,66,38,30,38,66,128,255,511,256, %U A350770 130,70,46,46,70,130,256,511,1023,512,258,134,78,62,78,134,258,512,1023,2047,1024,514,262,142,94,94,142,262,514,1024,2047 %N A350770 Triangle read by rows: T(n, k) = 2^(n-k-1) + 2^k - 2, 0 <= k <= n-1. %C A350770 T(n, k) is the number of player-reduced static games within an n-player two-strategy game scenario in which one player (the "standpoint") faces a specific combination of other players' individual strategies without the possibility of anti-coordination between them -- the total number of such combinations is 2^(n-1). The value of k represents the number of other players who (are expected to) agree on one of the two strategies in S, while the other n-k-1 choose the other strategy; the standpoint player is not included. %C A350770 The sum of the products of T(n, k) and binomial(n-1,k) for 0 <= k <= n-1 equals 2*A001047(n-1). For instance, for n = 3, T(3, k) returns 3, 2, and 3 and binomial(3-1,k) returns 1, 2, and 1 for k = 0, 1, and 2, respectively. Then 3*1 + 2*2 + 3*1 = 2*A001047(3-1) = 2*5 = 10. Similarly, for n = 4, the result yields 7*1 + 4*3 + 4*3 + 7*1 = 2*A001047(4-1) = 2*19 = 38. %H A350770 Andrew Howroyd, <a href="/A350770/b350770.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50). %H A350770 Ambrosio Valencia-Romero, <a href="https://www.proquest.com/docview/2582196102">Strategy Dynamics in Collective Systems Design</a>, Ph.D. Thesis, Stevens Institute of Technology (Hoboken, 2021). [Table 5.4, page 67] %H A350770 Ambrosio Valencia-Romero and P. T. Grogan, <a href="https://doi.org/10.1371/journal.pone.0301394">The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination</a>, PLOS ONE 19(4): e0301394 (<a href="https://doi.org/10.1371/journal.pone.0301394.s001">S1 Appendix</a>). %F A350770 T(n, k) = 2^(n-k-1) + 2^k - 2. %e A350770 Triangle begins: %e A350770 0; %e A350770 1, 1; %e A350770 3, 2, 3; %e A350770 7, 4, 4, 7; %e A350770 15, 8, 6, 8, 15; %e A350770 31, 16, 10, 10, 16, 31; %e A350770 63, 32, 18, 14, 18, 32, 63; %e A350770 127, 64, 34, 22, 22, 34, 64, 127; %e A350770 255, 128, 66, 38, 30, 38, 66, 128, 255; %e A350770 511, 256, 130, 70, 46, 46, 70, 130, 256, 511; %e A350770 1023, 512, 258, 134, 78, 62, 78, 134, 258, 512, 1023; %e A350770 2047, 1024, 514, 262, 142, 94, 94, 142, 262, 514, 1024, 2047; %e A350770 ... %p A350770 T := n -> seq(2^(n - k - 1) + 2^k - 2, k = 0 .. n - 1); %p A350770 seq(T(n), n=1..12); %o A350770 (PARI) T(n, k) = 2^(n-k-1) + 2^k - 2 \\ _Andrew Howroyd_, May 06 2023 %Y A350770 Column k=0 gives A000225(n-1). %Y A350770 Row sums give A145654. %Y A350770 Cf. A001047. %K A350770 nonn,easy,tabl %O A350770 1,4 %A A350770 _Ambrosio Valencia-Romero_, Jan 14 2022