This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350771 #16 May 04 2024 19:41:58 %S A350771 0,1,1,3,4,3,7,12,12,7,15,32,36,32,15,31,80,100,100,80,31,63,192,270, %T A350771 280,270,192,63,127,448,714,770,770,714,448,127,255,1024,1848,2128, %U A350771 2100,2128,1848,1024,255,511,2304,4680,5880,5796,5796,5880,4680,2304,511,1023,5120,11610,16080,16380,15624,16380,16080,11610,5120,1023 %N A350771 Triangle read by rows: T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k), 0 <= k <= n-1. %C A350771 The elements in T(n,k) result from the product of each element of A350770(n,k) and binomial(n-1,k). %H A350771 Andrew Howroyd, <a href="/A350771/b350771.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %H A350771 Ambrosio Valencia-Romero and P. T. Grogan, <a href="https://doi.org/10.1371/journal.pone.0301394">The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination</a>, PLOS ONE 19(4): e0301394 (<a href="https://doi.org/10.1371/journal.pone.0301394.s001">S1 Appendix</a>). %F A350771 T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k). %e A350771 Triangle begins: %e A350771 0; %e A350771 1, 1; %e A350771 3, 4, 3; %e A350771 7, 12, 12, 7; %e A350771 15, 32, 36, 32, 15; %e A350771 31, 80, 100, 100, 80, 31; %e A350771 63, 192, 270, 280, 270, 192, 63; %e A350771 127, 448, 714, 770, 770, 714, 448, 127; %e A350771 255, 1024, 1848, 2128, 2100, 2128, 1848, 1024, 255; %e A350771 511, 2304, 4680, 5880, 5796, 5796, 5880, 4680, 2304, 511; %e A350771 1023, 5120, 11610, 16080, 16380, 15624, 16380, 16080, 11610, 5120, 1023; %e A350771 ... %p A350771 T := n -> local k; seq((2^(n - k - 1) + 2^k - 2)*binomial(n - 1, k), k = 0 .. n - 1); %p A350771 seq(T(n), n = 1 .. 11); %o A350771 (PARI) T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k) \\ _Andrew Howroyd_, Jan 05 2024 %Y A350771 Column k=0 gives A000225(n-1). %Y A350771 Row sums give A056182(n-1) = 2*A001047(n-1). %K A350771 nonn,tabl %O A350771 1,4 %A A350771 _Ambrosio Valencia-Romero_, Jan 14 2022