This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350775 #12 Jan 25 2022 08:51:12 %S A350775 0,0,-1,0,1,-2,-3,-4,0,0,0,2,3,4,-5,-6,-7,-9,-9,-9,-13,-12,-11,1,0,-1, %T A350775 0,0,0,-1,0,1,7,6,5,9,9,9,11,12,13,-14,-15,-16,-18,-18,-18,-22,-21, %U A350775 -20,-26,-27,-28,-27,-27,-27,-28,-27,-26,-38,-39,-40,-36,-36 %N A350775 The balanced ternary expansion of a(n) is obtained by multiplying adjacent digits in the balanced ternary expansion of n: a(Sum_{k >= 0} t_k * 3^k) = Sum_{k >= 0} t_k * t_{k+1} * 3^k (with -1 <= t_k <= 1 for any k >= 0). %C A350775 This sequence is to balanced ternary what A048735 is to binary, or what A330633 is to decimal. %H A350775 Rémy Sigrist, <a href="/A350775/b350775.txt">Table of n, a(n) for n = 0..9841</a> %F A350775 a(n) = 0 iff n belongs to A350776. %e A350775 The first terms, in decimal and in balanced ternary, are: %e A350775 n a(n) bter(n) bter(a(n)) %e A350775 -- ---- ------- ---------- %e A350775 0 0 0 0 %e A350775 1 0 1 0 %e A350775 2 -1 1T T %e A350775 3 0 10 0 %e A350775 4 1 11 1 %e A350775 5 -2 1TT T1 %e A350775 6 -3 1T0 T0 %e A350775 7 -4 1T1 TT %e A350775 8 0 10T 0 %e A350775 9 0 100 0 %e A350775 10 0 101 0 %e A350775 11 2 11T 1T %e A350775 12 3 110 10 %e A350775 13 4 111 11 %o A350775 (PARI) a(n) = { my (v=0, p=0, d); for (x=-1, oo, if (n==0, return (v), d=[0, 1, -1][1+n%3]; v+=p*d*3^x; n=(n-d)/3; p=d)) } %Y A350775 Cf. A048735, A059095, A330633, A350776. %K A350775 sign,base %O A350775 0,6 %A A350775 _Rémy Sigrist_, Jan 15 2022