This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350787 #40 Jan 18 2022 11:54:38 %S A350787 0,0,1,3,12,38,122,372,1119,3301,9624,27756,79380,225384,636061, %T A350787 1785639,4990116,13889618,38524238,106514652,293668923,807608137, %U A350787 2215854384,6066935640,16579195560,45226399440,123173004985,334955873739,909611388732,2466965351678,6682629071522 %N A350787 Convolution of A001654 and A007598. %C A350787 Note that A001654(n) = F(n)*F(n+1) and A007598(n) = F(n)^2, for F(n) = A000045(n), the n-th Fibonacci number. %H A350787 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,-10,0,4,-1). %F A350787 a(n) = Sum_{i=0..n} F(i)*F(i+1)*F(n-i)^2. %F A350787 a(n) = ((n + 2)/5)*F(n)*F(n+1) - (3/25)*(F(2*n+2) + (n + 1)*(-1)^(n + 1)). %F A350787 G.f.: x^2*(1-x)/((x+1)*(x^2-3*x+1))^2. %F A350787 a(n) = 4*a(n-1) - 10*a(n-3) + 4*a(n-5) - a(n-6) for n > 5. - _Amiram Eldar_, Jan 17 2022 %e A350787 For n=2, a(2) = F(0)*F(1)*F(2)^2 + F(1)*F(2)*F(1)^2 + F(2)*F(3)*F(0)^2 = 1. %t A350787 Table[Sum[Fibonacci[i]*Fibonacci[i + 1]*Fibonacci[n - i]^2, {i, 0, n}], {n, 0, 30}] %o A350787 (PARI) a(n) = sum(i=0, n, fibonacci(i)*fibonacci(i+1)*fibonacci(n-i)^2); \\ _Michel Marcus_, Jan 17 2022 %Y A350787 Cf. A000045, A001654, A007598. %K A350787 nonn,easy %O A350787 0,4 %A A350787 _Greg Dresden_, Jan 16 2022