This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350802 #26 Mar 01 2022 14:51:13 %S A350802 0,0,1,3,1,7,1,21,1,21,1,34,1,43,1,65,1,73,1,94,1,127,1,157,1,157,1, %T A350802 186,1,227,1,265,1,273,12,287,1,309,12,328,1,349,12,376,115,463,126, %U A350802 495,1,397,12,411,1,465,12,484,1,505,12,532,277,797,288,829,1 %N A350802 a(n) is the sum of the numbers k < n such that a(k) AND n = a(k) (where AND denotes the bitwise AND operator). %C A350802 The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = a(1) = 0 correspond to empty sums. %H A350802 Rémy Sigrist, <a href="/A350802/b350802.txt">Table of n, a(n) for n = 0..10000</a> %e A350802 The first terms, alongside the corresponding k's, are: %e A350802 n a(n) k's %e A350802 -- ---- ------------------------- %e A350802 0 0 {} %e A350802 1 0 {0} %e A350802 2 1 {0, 1} %e A350802 3 3 {0, 1, 2} %e A350802 4 1 {0, 1} %e A350802 5 7 {0, 1, 2, 4} %e A350802 6 1 {0, 1} %e A350802 7 21 {0, 1, 2, 3, 4, 5, 6} %e A350802 8 1 {0, 1} %e A350802 9 21 {0, 1, 2, 4, 6, 8} %e A350802 10 1 {0, 1} %e A350802 11 34 {0, 1, 2, 3, 4, 6, 8, 10} %e A350802 12 1 {0, 1} %p A350802 a:= proc(n) option remember; add( %p A350802 `if`(Bits[And](n, a(j))=a(j), j, 0), j=0..n-1) %p A350802 end: %p A350802 seq(a(n), n=0..80); # _Alois P. Heinz_, Feb 28 2022 %o A350802 (PARI) for (n=1, #a=vector(65), print1 (a[n]=sum(k=1, n-1, if (bitand(a[k], n-1)==a[k], k-1, 0))", ")) %Y A350802 Cf. A350677, A351887. %K A350802 base,nonn %O A350802 0,4 %A A350802 _Rémy Sigrist_, Feb 25 2022