This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350810 #25 Jan 26 2022 07:23:51 %S A350810 0,1,3,50,39,48,75,27,3,8,92,407,923,651,479,606,933,372,114,11,92, %T A350810 422,859,607,456,602,850,410,81,12,96,4106,9703,6410,5117,6814,9521, %U A350810 4329,1139,5,1742,4547,9353,6261,5069,5976,8882,3891,904,1,919,3919,8925,6032,5041,6147,9254 %N A350810 a(n) = ceiling((n-R(n^2))^2/(n+R(n^2))), where R(n^2) is the digit reversal of n^2. %C A350810 This sequence gives both at large and small scales well-structured graphs; specific and periodic patterns are visible in separated layers. %H A350810 Rémy Sigrist, <a href="/A350810/b350810.txt">Table of n, a(n) for n = 1..10000</a> %e A350810 For n = 1, R(n^2) = 1, thus a(1) = ceiling((1-1)^2/(1+1)) = 0. %e A350810 For n = 10, R(n^2) = 1, thus a(10) = ceiling((10-1)^2/(10+1)) = 8. %e A350810 For n = 21, R(n^2) = 144, thus a(21) = ceiling((21-144)^2/(21+144)) = 92. %t A350810 Table[Ceiling[(n-FromDigits[Reverse[IntegerDigits[n^2]]])^2/(n+FromDigits[Reverse[IntegerDigits[n^2]]])],{n,57}] (* _Stefano Spezia_, Jan 18 2022 *) %o A350810 (PARI) a(n) = my(x = fromdigits(Vecrev(digits(n^2))));r = ceil((n-x)^2/(n+x)); %o A350810 for(n = 1,2000,print1(a(n)", ")) %o A350810 (Python) %o A350810 def R(n): return int(str(n)[::-1]) %o A350810 def a(n): %o A350810 Rn2 = R(n**2) %o A350810 q, r = divmod((n-Rn2)**2, n+Rn2) %o A350810 return q if r == 0 else q + 1 %o A350810 print([a(n) for n in range(1, 67)]) # _Michael S. Branicky_, Jan 17 2022 %Y A350810 Cf. A000290, A002942, A004086. %K A350810 nonn,base,easy,look %O A350810 1,3 %A A350810 _Claude H. R. Dequatre_, Jan 17 2022