cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350815 Array read by antidiagonals: T(m,n) is the number of minimum dominating sets in the m X n king graph.

This page as a plain text file.
%I A350815 #18 Feb 16 2025 08:34:02
%S A350815 1,2,2,1,4,1,4,2,2,4,3,16,1,16,3,1,12,4,4,12,1,8,4,3,256,3,4,8,4,64,1,
%T A350815 144,144,1,64,4,1,32,8,16,79,16,8,32,1,13,8,4,4096,9,9,4096,4,8,13,5,
%U A350815 208,1,1024,1656,1,1656,1024,1,208,5,1,80,13,64,408,64,64,408,64,13,80,1
%N A350815 Array read by antidiagonals: T(m,n) is the number of minimum dominating sets in the m X n king graph.
%C A350815 The minimum size of a dominating set is the domination number which in the case of an m X n king graph is given by (ceiling(m/3) * ceiling(n/3)).
%H A350815 Stephan Mertens, <a href="/A350815/b350815.txt">Table of n, a(n) for n = 1..946</a> (first 276 terms from Andrew Howroyd)
%H A350815 Stephan Mertens, <a href="https://arxiv.org/abs/2408.08053">Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph</a>, arXiv:2408.08053 [math.CO], Aug 2024.
%H A350815 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a>
%H A350815 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumDominatingSet.html">Minimum Dominating Set</a>
%F A350815 T(n,m) = T(m,n).
%F A350815 T(3*m, 3*n) = 1; T(3*m+1, 3*n) = (m^2 + 5*m + 2)^n; T(3*m+2, 3*n) = (m+2)^n.
%F A350815 T(3*m-1, 3*n-1) = A350819(m, n).
%e A350815 Table begins:
%e A350815 ============================================
%e A350815 m\n | 1  2  3    4    5   6      7     8
%e A350815 ----+---------------------------------------
%e A350815   1 | 1  2  1    4    3   1      8     4 ...
%e A350815   2 | 2  4  2   16   12   4     64    32 ...
%e A350815   3 | 1  2  1    4    3   1      8     4 ...
%e A350815   4 | 4 16  4  256  144  16   4096  1024 ...
%e A350815   5 | 3 12  3  144   79   9   1656   408 ...
%e A350815   6 | 1  4  1   16    9   1     64    16 ...
%e A350815   7 | 8 64  8 4096 1656  64 243856 29744 ...
%e A350815   8 | 4 32  4 1024  408  16  29744  3600 ...
%e A350815      ...
%Y A350815 Rows 1..3 are A347633, A350816, A347633.
%Y A350815 Main diagonal is A347554.
%Y A350815 Cf. A075561, A218663 (dominating sets), A286849 (minimal dominating sets), A303335, A350818, A350819.
%K A350815 nonn,look,tabl
%O A350815 1,2
%A A350815 _Andrew Howroyd_, Jan 17 2022