This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350820 #16 Feb 16 2025 08:34:02 %S A350820 1,2,2,1,6,1,4,3,3,4,3,12,10,12,3,1,2,29,29,2,1,8,17,1,2,1,17,8,4,2,2, %T A350820 52,52,2,2,4,1,20,11,92,22,92,11,20,1,13,2,46,2,13,13,2,46,2,13,5,24, %U A350820 1,4,3,288,3,4,1,24,5,1,2,3,324,344,34,34,344,324,3,2,1 %N A350820 Array read by antidiagonals: T(m,n) is the number of minimum dominating sets in the grid graph P_m X P_n. %C A350820 The domination number of the grid graphs is tabulated in A350823. %H A350820 Stephan Mertens, <a href="/A350820/b350820.txt">Table of n, a(n) for n = 1..946</a> (first 276 terms from Andrew Howroyd) %H A350820 Stephan Mertens, <a href="https://arxiv.org/abs/2408.08053">Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph</a>, arXiv:2408.08053 [math.CO], Aug 2024. %H A350820 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a> %H A350820 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumDominatingSet.html">Minimum Dominating Set</a> %F A350820 T(m,n) = T(n,m). %e A350820 Table begins: %e A350820 =================================== %e A350820 m\n | 1 2 3 4 5 6 7 8 %e A350820 ----+------------------------------ %e A350820 1 | 1 2 1 4 3 1 8 4 ... %e A350820 2 | 2 6 3 12 2 17 2 20 ... %e A350820 3 | 1 3 10 29 1 2 11 46 ... %e A350820 4 | 4 12 29 2 52 92 2 4 ... %e A350820 5 | 3 2 1 52 22 13 3 344 ... %e A350820 6 | 1 17 2 92 13 288 34 2 ... %e A350820 7 | 8 2 11 2 3 34 2 34 ... %e A350820 8 | 4 20 46 4 344 2 34 52 ... %e A350820 ... %Y A350820 Rows 1..4 are A347633, A347558, A350821, A350822. %Y A350820 Main diagonal is A347632. %Y A350820 Cf. A218354 (dominating sets), A286847 (minimal dominating sets), A303293, A350815, A350823. %K A350820 nonn,look,tabl %O A350820 1,2 %A A350820 _Andrew Howroyd_, Jan 17 2022