cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350836 Numbers k such that A103168(k) = A340592(k).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 14, 50, 101, 131, 151, 181, 191, 194, 313, 353, 373, 383, 712, 727, 757, 762, 787, 797, 919, 929, 1100, 1994, 2701, 4959, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 17 2022

Keywords

Comments

Numbers k such that the concatenation of the prime factors of k with multiplicity is congruent mod k to the reverse of k.
Terms for which the common value of A103168(k) and A340592(k) is prime include 14, 50, 194, 1100, and 116416.

Examples

			a(7) = 14 is a term because A103168(14) = 41 mod 14 = 13 and A340592(14) = 27 mod 14 = 13.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    f:= proc(n) local L,p,i,r;
      L:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      r:= L[1];
      for i from 2 to nops(L) do r:= r*10^(1+max(0,ilog10(L[i])))+L[i] od;
      r
    end proc:
    f(1):= 1:
    select(n -> (f(n) - revdigs(n)) mod n = 0, [$1..20000]);
  • Python
    from sympy import factorint
    def A103168(n):
        return int(str(n)[::-1])%n
    def A340592(n):
        if n == 1: return 0
        return int("".join(str(f) for f in factorint(n, multiple=True)))%n
    def ok(n):
        return A103168(n) == A340592(n)
    print([k for k in range(1, 20000) if ok(k)]) # Michael S. Branicky, Jan 18 2022