cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350838 Heinz numbers of partitions with no adjacent parts of quotient 2.

This page as a plain text file.
%I A350838 #12 Jan 27 2022 20:46:12
%S A350838 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20,22,23,25,26,27,28,29,31,
%T A350838 32,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,51,52,53,55,56,57,58,
%U A350838 59,61,62,64,67,68,69,70,71,73,74,75,76,77,79,80,81,82,83
%N A350838 Heinz numbers of partitions with no adjacent parts of quotient 2.
%C A350838 Differs from A320340 in having 105: (4,3,2), 315: (4,3,2,2), 455: (6,4,3), etc.
%C A350838 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with no adjacent prime indices of quotient 1/2.
%e A350838 The terms and their prime indices begin:
%e A350838       1: {}            19: {8}             38: {1,8}
%e A350838       2: {1}           20: {1,1,3}         39: {2,6}
%e A350838       3: {2}           22: {1,5}           40: {1,1,1,3}
%e A350838       4: {1,1}         23: {9}             41: {13}
%e A350838       5: {3}           25: {3,3}           43: {14}
%e A350838       7: {4}           26: {1,6}           44: {1,1,5}
%e A350838       8: {1,1,1}       27: {2,2,2}         45: {2,2,3}
%e A350838       9: {2,2}         28: {1,1,4}         46: {1,9}
%e A350838      10: {1,3}         29: {10}            47: {15}
%e A350838      11: {5}           31: {11}            49: {4,4}
%e A350838      13: {6}           32: {1,1,1,1,1}     50: {1,3,3}
%e A350838      14: {1,4}         33: {2,5}           51: {2,7}
%e A350838      15: {2,3}         34: {1,7}           52: {1,1,6}
%e A350838      16: {1,1,1,1}     35: {3,4}           53: {16}
%e A350838      17: {7}           37: {12}            55: {3,5}
%t A350838 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A350838 Select[Range[100],And@@Table[FreeQ[Divide@@@Partition[primeptn[#],2,1],2],{i,2,PrimeOmega[#]}]&]
%Y A350838 The version with quotients >= 2 is counted by A000929, sets A018819.
%Y A350838                            <= 2 is A342191, counted by A342094.
%Y A350838                            < 2 is counted by A342096, sets A045690.
%Y A350838                            > 2 is counted by A342098, sets A040039.
%Y A350838 The sets version (subsets of prescribed maximum) is counted by A045691.
%Y A350838 These partitions are counted by A350837.
%Y A350838 The strict case is counted by A350840.
%Y A350838 For differences instead of quotients we have A350842, strict A350844.
%Y A350838 The complement is A350845, counted by A350846.
%Y A350838 A000041 = integer partitions.
%Y A350838 A000045 = sets containing n with all differences > 2.
%Y A350838 A003114 = strict partitions with no successions, ranked by A325160.
%Y A350838 A056239 adds up prime indices, row sums of A112798, counted by A001222.
%Y A350838 A116931 = partitions with no successions, ranked by A319630.
%Y A350838 A116932 = partitions with differences != 1 or 2, strict A025157.
%Y A350838 A323092 = double-free integer partitions, ranked by A320340.
%Y A350838 A350839 = partitions with gaps and conjugate gaps, ranked by A350841.
%Y A350838 Cf. A000302, A001105, A003000, A018819, A094537, A120641, A154402, A319613, A323093, A337135, A342097, A342095.
%K A350838 nonn
%O A350838 1,2
%A A350838 _Gus Wiseman_, Jan 18 2022