This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350838 #12 Jan 27 2022 20:46:12 %S A350838 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20,22,23,25,26,27,28,29,31, %T A350838 32,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,51,52,53,55,56,57,58, %U A350838 59,61,62,64,67,68,69,70,71,73,74,75,76,77,79,80,81,82,83 %N A350838 Heinz numbers of partitions with no adjacent parts of quotient 2. %C A350838 Differs from A320340 in having 105: (4,3,2), 315: (4,3,2,2), 455: (6,4,3), etc. %C A350838 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with no adjacent prime indices of quotient 1/2. %e A350838 The terms and their prime indices begin: %e A350838 1: {} 19: {8} 38: {1,8} %e A350838 2: {1} 20: {1,1,3} 39: {2,6} %e A350838 3: {2} 22: {1,5} 40: {1,1,1,3} %e A350838 4: {1,1} 23: {9} 41: {13} %e A350838 5: {3} 25: {3,3} 43: {14} %e A350838 7: {4} 26: {1,6} 44: {1,1,5} %e A350838 8: {1,1,1} 27: {2,2,2} 45: {2,2,3} %e A350838 9: {2,2} 28: {1,1,4} 46: {1,9} %e A350838 10: {1,3} 29: {10} 47: {15} %e A350838 11: {5} 31: {11} 49: {4,4} %e A350838 13: {6} 32: {1,1,1,1,1} 50: {1,3,3} %e A350838 14: {1,4} 33: {2,5} 51: {2,7} %e A350838 15: {2,3} 34: {1,7} 52: {1,1,6} %e A350838 16: {1,1,1,1} 35: {3,4} 53: {16} %e A350838 17: {7} 37: {12} 55: {3,5} %t A350838 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A350838 Select[Range[100],And@@Table[FreeQ[Divide@@@Partition[primeptn[#],2,1],2],{i,2,PrimeOmega[#]}]&] %Y A350838 The version with quotients >= 2 is counted by A000929, sets A018819. %Y A350838 <= 2 is A342191, counted by A342094. %Y A350838 < 2 is counted by A342096, sets A045690. %Y A350838 > 2 is counted by A342098, sets A040039. %Y A350838 The sets version (subsets of prescribed maximum) is counted by A045691. %Y A350838 These partitions are counted by A350837. %Y A350838 The strict case is counted by A350840. %Y A350838 For differences instead of quotients we have A350842, strict A350844. %Y A350838 The complement is A350845, counted by A350846. %Y A350838 A000041 = integer partitions. %Y A350838 A000045 = sets containing n with all differences > 2. %Y A350838 A003114 = strict partitions with no successions, ranked by A325160. %Y A350838 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A350838 A116931 = partitions with no successions, ranked by A319630. %Y A350838 A116932 = partitions with differences != 1 or 2, strict A025157. %Y A350838 A323092 = double-free integer partitions, ranked by A320340. %Y A350838 A350839 = partitions with gaps and conjugate gaps, ranked by A350841. %Y A350838 Cf. A000302, A001105, A003000, A018819, A094537, A120641, A154402, A319613, A323093, A337135, A342097, A342095. %K A350838 nonn %O A350838 1,2 %A A350838 _Gus Wiseman_, Jan 18 2022