This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350839 #8 Jan 29 2022 12:49:09 %S A350839 0,0,0,0,0,1,2,3,7,11,17,26,39,54,81,108,148,201,269,353,467,601,779, %T A350839 995,1272,1605,2029,2538,3171,3941,4881,6012,7405,9058,11077,13478, %U A350839 16373,19817,23953,28850,34692,41599,49802,59461,70905,84321,100155,118694 %N A350839 Number of integer partitions of n with a difference < -1 and a conjugate difference < -1. %C A350839 We define a difference of a partition to be a difference of two adjacent parts. %e A350839 The a(5) = 1 through a(10) = 17 partitions: %e A350839 (311) (411) (511) (422) (522) (622) %e A350839 (3111) (4111) (611) (711) (811) %e A350839 (31111) (3311) (4221) (4222) %e A350839 (4211) (4311) (4411) %e A350839 (5111) (5211) (5221) %e A350839 (41111) (6111) (5311) %e A350839 (311111) (33111) (6211) %e A350839 (42111) (7111) %e A350839 (51111) (42211) %e A350839 (411111) (43111) %e A350839 (3111111) (52111) %e A350839 (61111) %e A350839 (331111) %e A350839 (421111) %e A350839 (511111) %e A350839 (4111111) %e A350839 (31111111) %t A350839 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A350839 Table[Length[Select[IntegerPartitions[n],(Min@@Differences[#]<-1)&&(Min@@Differences[conj[#]]<-1)&]],{n,0,30}] %Y A350839 Allowing -1 gives A144300 = non-constant partitions. %Y A350839 Taking one of the two conditions gives A239955, ranked by A073492, A065201. %Y A350839 These partitions are ranked by A350841. %Y A350839 A000041 = integer partitions, strict A000009. %Y A350839 A034296 = flat (contiguous) partitions, strict A001227. %Y A350839 A073491 = numbers whose prime indices have no gaps, strict A137793. %Y A350839 A090858 = partitions with a single hole, ranked by A325284. %Y A350839 A116931 = partitions with differences != -1, strict A003114. %Y A350839 A116932 = partitions with differences != -1 or -2, strict A025157. %Y A350839 A277103 = partitions with the same number of odd parts as their conjugate. %Y A350839 A350837 = partitions with no adjacent doublings, strict A350840. %Y A350839 A350842 = partitions with differences != -2, strict A350844, sets A005314. %Y A350839 Cf. A000070, A000929, A008284, A040039, A183558, A319630, A321440, A350838. %K A350839 nonn %O A350839 0,7 %A A350839 _Gus Wiseman_, Jan 24 2022