This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350841 #6 Jan 27 2022 20:46:31 %S A350841 20,28,40,44,52,56,63,68,76,80,84,88,92,99,100,104,112,116,117,124, %T A350841 126,132,136,140,148,152,153,156,160,164,168,171,172,176,184,188,189, %U A350841 196,198,200,204,207,208,212,220,224,228,232,234,236,244,248,252,260,261 %N A350841 Heinz numbers of integer partitions with a difference < -1 and a conjugate difference < -1. %C A350841 We define a difference of a partition to be a difference of two adjacent parts. %e A350841 The terms together with their prime indices begin: %e A350841 20: (3,1,1) %e A350841 28: (4,1,1) %e A350841 40: (3,1,1,1) %e A350841 44: (5,1,1) %e A350841 52: (6,1,1) %e A350841 56: (4,1,1,1) %e A350841 63: (4,2,2) %e A350841 68: (7,1,1) %e A350841 76: (8,1,1) %e A350841 80: (3,1,1,1,1) %e A350841 84: (4,2,1,1) %e A350841 88: (5,1,1,1) %e A350841 92: (9,1,1) %e A350841 99: (5,2,2) %t A350841 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A350841 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A350841 Select[Range[100],(Min@@Differences[Reverse[primeMS[#]]]<-1)&&(Min@@Differences[conj[primeMS[#]]]<-1)&] %Y A350841 Heinz number rankings are in parentheses below. %Y A350841 Taking just one condition gives (A073492) and (A065201), counted by A239955. %Y A350841 These partitions are counted by A350839. %Y A350841 A000041 = integer partitions, strict A000009. %Y A350841 A034296 = partitions with no gaps (A073491), strict A001227 (A073485). %Y A350841 A090858 = partitions with a single gap of size 1 (A325284). %Y A350841 A116931 = partitions with no successions (A319630), strict A003114. %Y A350841 A116932 = partitions with no successions or gaps of size 1, strict A025157. %Y A350841 A350842 = partitions with no gaps of size 1, strict A350844, sets A005314. %Y A350841 Cf. A000070, A024619, A026424, A055932, A183558, A277103, A305148, A321440, A350838. %K A350841 nonn %O A350841 1,1 %A A350841 _Gus Wiseman_, Jan 26 2022