This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350842 #10 Jan 27 2022 20:46:41 %S A350842 1,1,2,3,4,6,9,12,16,24,30,40,54,69,89,118,146,187,239,297,372,468, %T A350842 575,711,880,1075,1314,1610,1947,2359,2864,3438,4135,4973,5936,7090, %U A350842 8466,10044,11922,14144,16698,19704,23249,27306,32071,37639,44019,51457,60113 %N A350842 Number of integer partitions of n with no difference -2. %H A350842 Gus Wiseman, <a href="/A069916/a069916.txt">Sequences counting and ranking partitions and compositions by their differences and quotients</a>. %e A350842 The a(1) = 1 through a(7) = 12 partitions: %e A350842 (1) (2) (3) (4) (5) (6) (7) %e A350842 (11) (21) (22) (32) (33) (43) %e A350842 (111) (211) (41) (51) (52) %e A350842 (1111) (221) (222) (61) %e A350842 (2111) (321) (322) %e A350842 (11111) (411) (511) %e A350842 (2211) (2221) %e A350842 (21111) (3211) %e A350842 (111111) (4111) %e A350842 (22111) %e A350842 (211111) %e A350842 (1111111) %t A350842 Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}] %Y A350842 Heinz number rankings are in parentheses below. %Y A350842 The version for no difference 0 is A000009. %Y A350842 The version for subsets of prescribed maximum is A005314. %Y A350842 The version for all differences < -2 is A025157, non-strict A116932. %Y A350842 The version for all differences > -2 is A034296, strict A001227. %Y A350842 The opposite version is A072670. %Y A350842 The version for no difference -1 is A116931 (A319630), strict A003114. %Y A350842 The multiplicative version is A350837 (A350838), strict A350840. %Y A350842 The strict case is A350844. %Y A350842 The complement for quotients is counted by A350846 (A350845). %Y A350842 A000041 = integer partitions. %Y A350842 A027187 = partitions of even length. %Y A350842 A027193 = partitions of odd length (A026424). %Y A350842 A323092 = double-free partitions (A320340), strict A120641. %Y A350842 A325534 = separable partitions (A335433). %Y A350842 A325535 = inseparable partitions (A335448). %Y A350842 A350839 = partitions with a gap and conjugate gap (A350841). %Y A350842 Cf. A000070, A000929, A001511, A003242, A007359, A018819, A040039, A045690, A045691, A101417, A154402, A323093. %K A350842 nonn %O A350842 0,3 %A A350842 _Gus Wiseman_, Jan 20 2022