This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350844 #9 Jan 25 2022 10:26:18 %S A350844 1,1,1,2,1,3,3,4,4,7,7,8,11,12,15,18,21,23,31,32,40,45,54,59,73,78,94, %T A350844 106,122,136,161,177,203,231,259,293,334,372,417,476,525,592,663,742, %U A350844 821,931,1020,1147,1271,1416,1558,1752,1916,2137,2357,2613,2867 %N A350844 Number of strict integer partitions of n with no difference -2. %H A350844 Gus Wiseman, <a href="/A069916/a069916.txt">Sequences counting and ranking partitions and compositions by their differences and quotients</a>. %e A350844 The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12): %e A350844 1 2 3 4 5 6 7 8 9 A B C %e A350844 21 32 51 43 62 54 73 65 84 %e A350844 41 321 52 71 63 82 74 93 %e A350844 61 521 72 91 83 A2 %e A350844 81 541 92 B1 %e A350844 432 721 A1 543 %e A350844 621 4321 632 651 %e A350844 821 732 %e A350844 741 %e A350844 921 %e A350844 6321 %t A350844 Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],0|-2]&]],{n,0,30}] %Y A350844 The version for no difference 0 is A000009. %Y A350844 The version for no difference > -2 is A001227, non-strict A034296. %Y A350844 The version for no difference -1 is A003114 (A325160). %Y A350844 The version for subsets of prescribed maximum is A005314. %Y A350844 The version for all differences < -2 is A025157, non-strict A116932. %Y A350844 The opposite version is A072670. %Y A350844 The multiplicative version is A350840, non-strict A350837 (A350838). %Y A350844 The non-strict version is A350842. %Y A350844 A000041 counts integer partitions. %Y A350844 A027187 counts partitions of even length. %Y A350844 A027193 counts partitions of odd length (A026424). %Y A350844 A116931 counts partitions with no difference -1 (A319630). %Y A350844 A323092 counts double-free integer partitions (A320340) strict A120641. %Y A350844 A325534 counts separable partitions (A335433). %Y A350844 A325535 counts inseparable partitions (A335448). %Y A350844 Cf. A000929, A003000, A018819, A040039, A045690, A045691, A154402, A303362, A323094, A342095, A342097. %K A350844 nonn %O A350844 0,4 %A A350844 _Gus Wiseman_, Jan 21 2022