cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350845 Heinz numbers of integer partitions with at least two adjacent parts of quotient 2.

This page as a plain text file.
%I A350845 #9 Jan 27 2022 20:46:51
%S A350845 6,12,18,21,24,30,36,42,48,54,60,63,65,66,72,78,84,90,96,102,108,114,
%T A350845 120,126,130,132,133,138,144,147,150,156,162,168,174,180,186,189,192,
%U A350845 195,198,204,210,216,222,228,231,234,240,246,252,258,260,264,266,270
%N A350845 Heinz numbers of integer partitions with at least two adjacent parts of quotient 2.
%C A350845 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with at least two adjacent prime indices of quotient 1/2.
%e A350845 The terms and corresponding partitions begin:
%e A350845    6: (2,1)
%e A350845   12: (2,1,1)
%e A350845   18: (2,2,1)
%e A350845   21: (4,2)
%e A350845   24: (2,1,1,1)
%e A350845   30: (3,2,1)
%e A350845   36: (2,2,1,1)
%e A350845   42: (4,2,1)
%e A350845   48: (2,1,1,1,1)
%e A350845   54: (2,2,2,1)
%e A350845   60: (3,2,1,1)
%e A350845   63: (4,2,2)
%e A350845   65: (6,3)
%e A350845   66: (5,2,1)
%e A350845   72: (2,2,1,1,1)
%e A350845   78: (6,2,1)
%e A350845   84: (4,2,1,1)
%e A350845   90: (3,2,2,1)
%e A350845   96: (2,1,1,1,1,1)
%t A350845 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A350845 Select[Range[100],MemberQ[Divide@@@Partition[primeptn[#],2,1],2]&]
%Y A350845 The complement is A350838, counted by A350837.
%Y A350845 The strict complement is counted by A350840.
%Y A350845 These partitions are counted by A350846.
%Y A350845 A000041 = integer partitions.
%Y A350845 A000045 = sets containing n with all differences > 2.
%Y A350845 A056239 adds up prime indices, row sums of A112798, counted by A001222.
%Y A350845 A116931 = partitions with no successions, ranked by A319630.
%Y A350845 A116932 = partitions with differences != 1 or 2, strict A025157.
%Y A350845 A323092 = double-free integer partitions, ranked by A320340.
%Y A350845 A325160 ranks strict partitions with no successions, counted by A003114.
%Y A350845 A350839 = partitions with gaps and conjugate gaps, ranked by A350841.
%Y A350845 Cf. A000929, A001105, A018819, A045690, A045691, A094537, A154402, A319613, A323093, A337135, A342094, A342095, A342098, A342191.
%K A350845 nonn
%O A350845 1,1
%A A350845 _Gus Wiseman_, Jan 20 2022