A350846 Number of integer partitions of n with at least two adjacent parts of quotient 2.
0, 0, 0, 1, 1, 2, 4, 5, 8, 12, 18, 25, 36, 48, 65, 89, 119, 157, 207, 269, 350, 448, 574, 729, 927, 1166, 1465, 1830, 2282, 2827, 3501, 4309, 5300, 6483, 7923, 9641, 11718, 14187, 17155, 20674, 24885, 29860, 35787, 42772, 51054, 60791, 72289, 85772, 101641
Offset: 0
Keywords
Examples
The a(3) = 1 through a(9) = 12 partitions: (21) (211) (221) (42) (421) (422) (63) (2111) (321) (2221) (521) (621) (2211) (3211) (3221) (3321) (21111) (22111) (4211) (4221) (211111) (22211) (5211) (32111) (22221) (221111) (32211) (2111111) (42111) (222111) (321111) (2211111) (21111111)
Crossrefs
A000041 = integer partitions.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], MemberQ[Divide@@@Partition[#,2,1],2]&]],{n,0,30}]