This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350848 #6 Jan 27 2022 20:47:11 %S A350848 1,6,18,21,24,54,65,70,72,84,96,133,147,162,182,189,210,216,260,280, %T A350848 288,319,336,384,418,429,481,486,490,525,532,546,585,588,630,648,728, %U A350848 731,741,754,756,840,845,864,1007,1029,1040,1120,1152,1197,1254,1258,1276 %N A350848 Heinz numbers of integer partitions for which the number of even conjugate parts is equal to the number of odd conjugate parts. %C A350848 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A350848 A344616(a(n)) = A350847(a(n)). %F A350848 A257991(A122111(a(n))) = A257992(A122111(a(n))). %e A350848 The terms together with their prime indices begin: %e A350848 1: () %e A350848 6: (2,1) %e A350848 18: (2,2,1) %e A350848 21: (4,2) %e A350848 24: (2,1,1,1) %e A350848 54: (2,2,2,1) %e A350848 65: (6,3) %e A350848 70: (4,3,1) %e A350848 72: (2,2,1,1,1) %e A350848 84: (4,2,1,1) %e A350848 96: (2,1,1,1,1,1) %t A350848 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A350848 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A350848 Select[Range[100],Count[conj[primeMS[#]],_?EvenQ]==Count[conj[primeMS[#]],_?OddQ]&] %Y A350848 These partitions are counted by A045931. %Y A350848 The conjugate strict version is counted by A239241. %Y A350848 The conjugate version is A325698. %Y A350848 These are the positions of 0's in A350941. %Y A350848 Adding the conjugate condition gives A350946, all four equal A350947. %Y A350848 A257991 counts odd parts, conjugate A344616. %Y A350848 A257992 counts even parts, conjugate A350847. %Y A350848 A325698: # of even parts = # of odd parts. %Y A350848 A349157: # of even parts = # of odd conjugate parts, counted by A277579. %Y A350848 A350848: # even conjugate parts = # odd conjugate parts, counted by A045931. %Y A350848 A350943: # of even conjugate parts = # of odd parts, counted by A277579. %Y A350848 A350944: # of odd parts = # of odd conjugate parts, counted by A277103. %Y A350848 A350945: # of even parts = # of even conjugate parts, counted by A350948. %Y A350848 A000041 = integer partitions, strict A000009. %Y A350848 A056239 adds up prime indices, counted by A001222, row sums of A112798. %Y A350848 A316524 = alternating sum of prime indices, reverse A344616. %Y A350848 Cf. A024619, A026424, A028260, A103919, A130780, A171966, A195017, A241638, A325700, A350849, A350942, A350949. %K A350848 nonn %O A350848 1,2 %A A350848 _Gus Wiseman_, Jan 27 2022