cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350848 Heinz numbers of integer partitions for which the number of even conjugate parts is equal to the number of odd conjugate parts.

This page as a plain text file.
%I A350848 #6 Jan 27 2022 20:47:11
%S A350848 1,6,18,21,24,54,65,70,72,84,96,133,147,162,182,189,210,216,260,280,
%T A350848 288,319,336,384,418,429,481,486,490,525,532,546,585,588,630,648,728,
%U A350848 731,741,754,756,840,845,864,1007,1029,1040,1120,1152,1197,1254,1258,1276
%N A350848 Heinz numbers of integer partitions for which the number of even conjugate parts is equal to the number of odd conjugate parts.
%C A350848 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A350848 A344616(a(n)) = A350847(a(n)).
%F A350848 A257991(A122111(a(n))) = A257992(A122111(a(n))).
%e A350848 The terms together with their prime indices begin:
%e A350848    1: ()
%e A350848    6: (2,1)
%e A350848   18: (2,2,1)
%e A350848   21: (4,2)
%e A350848   24: (2,1,1,1)
%e A350848   54: (2,2,2,1)
%e A350848   65: (6,3)
%e A350848   70: (4,3,1)
%e A350848   72: (2,2,1,1,1)
%e A350848   84: (4,2,1,1)
%e A350848   96: (2,1,1,1,1,1)
%t A350848 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A350848 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A350848 Select[Range[100],Count[conj[primeMS[#]],_?EvenQ]==Count[conj[primeMS[#]],_?OddQ]&]
%Y A350848 These partitions are counted by A045931.
%Y A350848 The conjugate strict version is counted by A239241.
%Y A350848 The conjugate version is A325698.
%Y A350848 These are the positions of 0's in A350941.
%Y A350848 Adding the conjugate condition gives A350946, all four equal A350947.
%Y A350848 A257991 counts odd parts, conjugate A344616.
%Y A350848 A257992 counts even parts, conjugate A350847.
%Y A350848 A325698: # of even parts = # of odd parts.
%Y A350848 A349157: # of even parts = # of odd conjugate parts, counted by A277579.
%Y A350848 A350848: # even conjugate parts = # odd conjugate parts, counted by A045931.
%Y A350848 A350943: # of even conjugate parts = # of odd parts, counted by A277579.
%Y A350848 A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
%Y A350848 A350945: # of even parts = # of even conjugate parts, counted by A350948.
%Y A350848 A000041 = integer partitions, strict A000009.
%Y A350848 A056239 adds up prime indices, counted by A001222, row sums of A112798.
%Y A350848 A316524 = alternating sum of prime indices, reverse A344616.
%Y A350848 Cf. A024619, A026424, A028260, A103919, A130780, A171966, A195017, A241638, A325700, A350849, A350942, A350949.
%K A350848 nonn
%O A350848 1,2
%A A350848 _Gus Wiseman_, Jan 27 2022