A350854 Numbers k such that tau(k) + ... + tau(k+7) = 40, where tau is the number of divisors function A000005.
38, 39, 41, 51, 55, 67, 82, 10780552, 62198632, 884811061, 1457032501, 3573315892, 7321991041, 7391371681, 8557865812, 11434075381, 16893247141, 21599190901, 22487905441, 28044279892, 28273111012, 37923188932, 50238568801, 59635316161, 77814456292, 86148922852
Offset: 1
Keywords
Examples
The table below lists each term k that is the smallest one having a pattern (tau(k), ..., tau(k+7)) that appears repeatedly for large k. Each such pattern corresponds to one of the 4 possible orders in which the multipliers m=1..8 can appear among 8 consecutive integers of the form m*prime, and thus to a single residue of k modulo 2520; e.g., k=884811061 begins a run of 8 consecutive integers having the form (p, 2*q, 3*r, 8*s, 5*t, 6*u, 7*v, 4*w), where p, q, r, s, t, u, v, and w are distinct primes > 8, and all such runs satisfy k == 1261 (mod 2520). . . # divisors of factorization of k+j as k+j for j = m*(prime > 8) for j = n a(n)=k 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 k mod 2520 - ---------- - - - - - - - - -- -- -- -- -- -- -- -- ---------- 8 10780552 8 4 8 4 6 4 4 2 8p 7q 6r 5s 4t 3u 2v w 2512 10 884811061 2 4 4 8 4 8 4 6 p 2q 3r 8s 5t 6u 7v 4w 1261 12 3573315892 6 4 8 4 8 4 4 2 4p 7q 6r 5s 8t 3u 2v w 1252 13 7321991041 2 4 4 6 4 8 4 8 p 2q 3r 4s 5t 6u 7v 8w 1
Crossrefs
Programs
-
Mathematica
Position[Plus @@@ Partition[Array[DivisorSigma[0, #] &, 100], 8, 1], 40] // Flatten (* Amiram Eldar, Jan 19 2022 *)
-
Python
from sympy import divisor_count as tau taulist = [1, 2, 2, 3, 2, 4, 2, 4] for k in range(1, 10000000): if sum(taulist) == 40: print(k, end=", ") taulist.append(tau(k+8)) del taulist[0] # Karl-Heinz Hofmann, Jan 21 2022
Formula
{ k : Sum_{j=0..7} tau(k+j) = 40 }.
Comments