cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350865 Sum of the larger parts in the partitions of n into two prime parts.

This page as a plain text file.
%I A350865 #12 Jan 27 2022 21:06:49
%S A350865 0,0,0,0,2,3,3,5,5,7,12,0,7,11,18,13,24,0,24,17,30,19,47,0,49,23,55,0,
%T A350865 40,0,59,29,48,31,100,0,102,0,50,37,89,0,120,41,109,43,136,0,181,47,
%U A350865 158,0,117,0,199,53,133,0,170,0,252,59,133,61,261,0,300,0,98,67,267,0
%N A350865 Sum of the larger parts in the partitions of n into two prime parts.
%H A350865 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A350865 a(n) = Sum_{k=1..floor(n/2)} c(k) * c(n-k) * (n-k), where c = A010051.
%F A350865 a(n) = Sum_{k=floor((n-1)^2/4)+1..floor(n^2/4)} c(2k-1) * c(2k) * A339399(2k), where c = A350866.
%e A350865 a(10) = 12; The partitions of 10 into two prime parts are (7,3) and (5,5). The sum of the larger parts of these partitions is then 7+5 = 12.
%o A350865 (PARI) a(n) = sum(k=1, n\2, if (isprime(k) && isprime(n-k), n-k)); \\ _Michel Marcus_, Jan 21 2022
%Y A350865 Cf. A010051, A061358, A339399, A350866, A350883 (smaller parts).
%K A350865 nonn
%O A350865 0,5
%A A350865 _Wesley Ivan Hurt_, Jan 19 2022